Factor
\left(2x-3\right)\left(3x+5\right)
Evaluate
6x^{2}+x-15
Graph
Share
Copied to clipboard
6x^{2}+x-15
Multiply and combine like terms.
a+b=1 ab=6\left(-15\right)=-90
Factor the expression by grouping. First, the expression needs to be rewritten as 6x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
-1,90 -2,45 -3,30 -5,18 -6,15 -9,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -90.
-1+90=89 -2+45=43 -3+30=27 -5+18=13 -6+15=9 -9+10=1
Calculate the sum for each pair.
a=-9 b=10
The solution is the pair that gives sum 1.
\left(6x^{2}-9x\right)+\left(10x-15\right)
Rewrite 6x^{2}+x-15 as \left(6x^{2}-9x\right)+\left(10x-15\right).
3x\left(2x-3\right)+5\left(2x-3\right)
Factor out 3x in the first and 5 in the second group.
\left(2x-3\right)\left(3x+5\right)
Factor out common term 2x-3 by using distributive property.
6x^{2}+x-15
Combine -9x and 10x to get x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}