Solve for x
x = \frac{\sqrt{17} + 3}{4} \approx 1.780776406
x=\frac{3-\sqrt{17}}{4}\approx -0.280776406
Graph
Share
Copied to clipboard
6x^{2}-8x+1-x=4
Subtract x from both sides.
6x^{2}-9x+1=4
Combine -8x and -x to get -9x.
6x^{2}-9x+1-4=0
Subtract 4 from both sides.
6x^{2}-9x-3=0
Subtract 4 from 1 to get -3.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 6\left(-3\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -9 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 6\left(-3\right)}}{2\times 6}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-24\left(-3\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-9\right)±\sqrt{81+72}}{2\times 6}
Multiply -24 times -3.
x=\frac{-\left(-9\right)±\sqrt{153}}{2\times 6}
Add 81 to 72.
x=\frac{-\left(-9\right)±3\sqrt{17}}{2\times 6}
Take the square root of 153.
x=\frac{9±3\sqrt{17}}{2\times 6}
The opposite of -9 is 9.
x=\frac{9±3\sqrt{17}}{12}
Multiply 2 times 6.
x=\frac{3\sqrt{17}+9}{12}
Now solve the equation x=\frac{9±3\sqrt{17}}{12} when ± is plus. Add 9 to 3\sqrt{17}.
x=\frac{\sqrt{17}+3}{4}
Divide 9+3\sqrt{17} by 12.
x=\frac{9-3\sqrt{17}}{12}
Now solve the equation x=\frac{9±3\sqrt{17}}{12} when ± is minus. Subtract 3\sqrt{17} from 9.
x=\frac{3-\sqrt{17}}{4}
Divide 9-3\sqrt{17} by 12.
x=\frac{\sqrt{17}+3}{4} x=\frac{3-\sqrt{17}}{4}
The equation is now solved.
6x^{2}-8x+1-x=4
Subtract x from both sides.
6x^{2}-9x+1=4
Combine -8x and -x to get -9x.
6x^{2}-9x=4-1
Subtract 1 from both sides.
6x^{2}-9x=3
Subtract 1 from 4 to get 3.
\frac{6x^{2}-9x}{6}=\frac{3}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{9}{6}\right)x=\frac{3}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{3}{2}x=\frac{3}{6}
Reduce the fraction \frac{-9}{6} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{3}{2}x=\frac{1}{2}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{1}{2}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{1}{2}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{17}{16}
Add \frac{1}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=\frac{17}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{17}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{\sqrt{17}}{4} x-\frac{3}{4}=-\frac{\sqrt{17}}{4}
Simplify.
x=\frac{\sqrt{17}+3}{4} x=\frac{3-\sqrt{17}}{4}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}