Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(x^{2}-x\right)
Factor out 6.
x\left(x-1\right)
Consider x^{2}-x. Factor out x.
6x\left(x-1\right)
Rewrite the complete factored expression.
6x^{2}-6x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±6}{2\times 6}
Take the square root of \left(-6\right)^{2}.
x=\frac{6±6}{2\times 6}
The opposite of -6 is 6.
x=\frac{6±6}{12}
Multiply 2 times 6.
x=\frac{12}{12}
Now solve the equation x=\frac{6±6}{12} when ± is plus. Add 6 to 6.
x=1
Divide 12 by 12.
x=\frac{0}{12}
Now solve the equation x=\frac{6±6}{12} when ± is minus. Subtract 6 from 6.
x=0
Divide 0 by 12.
6x^{2}-6x=6\left(x-1\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1 for x_{1} and 0 for x_{2}.