Factor
\left(2x-9\right)\left(3x-14\right)
Evaluate
\left(2x-9\right)\left(3x-14\right)
Graph
Share
Copied to clipboard
a+b=-55 ab=6\times 126=756
Factor the expression by grouping. First, the expression needs to be rewritten as 6x^{2}+ax+bx+126. To find a and b, set up a system to be solved.
-1,-756 -2,-378 -3,-252 -4,-189 -6,-126 -7,-108 -9,-84 -12,-63 -14,-54 -18,-42 -21,-36 -27,-28
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 756.
-1-756=-757 -2-378=-380 -3-252=-255 -4-189=-193 -6-126=-132 -7-108=-115 -9-84=-93 -12-63=-75 -14-54=-68 -18-42=-60 -21-36=-57 -27-28=-55
Calculate the sum for each pair.
a=-28 b=-27
The solution is the pair that gives sum -55.
\left(6x^{2}-28x\right)+\left(-27x+126\right)
Rewrite 6x^{2}-55x+126 as \left(6x^{2}-28x\right)+\left(-27x+126\right).
2x\left(3x-14\right)-9\left(3x-14\right)
Factor out 2x in the first and -9 in the second group.
\left(3x-14\right)\left(2x-9\right)
Factor out common term 3x-14 by using distributive property.
6x^{2}-55x+126=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-55\right)±\sqrt{\left(-55\right)^{2}-4\times 6\times 126}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-55\right)±\sqrt{3025-4\times 6\times 126}}{2\times 6}
Square -55.
x=\frac{-\left(-55\right)±\sqrt{3025-24\times 126}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-55\right)±\sqrt{3025-3024}}{2\times 6}
Multiply -24 times 126.
x=\frac{-\left(-55\right)±\sqrt{1}}{2\times 6}
Add 3025 to -3024.
x=\frac{-\left(-55\right)±1}{2\times 6}
Take the square root of 1.
x=\frac{55±1}{2\times 6}
The opposite of -55 is 55.
x=\frac{55±1}{12}
Multiply 2 times 6.
x=\frac{56}{12}
Now solve the equation x=\frac{55±1}{12} when ± is plus. Add 55 to 1.
x=\frac{14}{3}
Reduce the fraction \frac{56}{12} to lowest terms by extracting and canceling out 4.
x=\frac{54}{12}
Now solve the equation x=\frac{55±1}{12} when ± is minus. Subtract 1 from 55.
x=\frac{9}{2}
Reduce the fraction \frac{54}{12} to lowest terms by extracting and canceling out 6.
6x^{2}-55x+126=6\left(x-\frac{14}{3}\right)\left(x-\frac{9}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{14}{3} for x_{1} and \frac{9}{2} for x_{2}.
6x^{2}-55x+126=6\times \frac{3x-14}{3}\left(x-\frac{9}{2}\right)
Subtract \frac{14}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}-55x+126=6\times \frac{3x-14}{3}\times \frac{2x-9}{2}
Subtract \frac{9}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}-55x+126=6\times \frac{\left(3x-14\right)\left(2x-9\right)}{3\times 2}
Multiply \frac{3x-14}{3} times \frac{2x-9}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
6x^{2}-55x+126=6\times \frac{\left(3x-14\right)\left(2x-9\right)}{6}
Multiply 3 times 2.
6x^{2}-55x+126=\left(3x-14\right)\left(2x-9\right)
Cancel out 6, the greatest common factor in 6 and 6.
x ^ 2 -\frac{55}{6}x +21 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 6
r + s = \frac{55}{6} rs = 21
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{55}{12} - u s = \frac{55}{12} + u
Two numbers r and s sum up to \frac{55}{6} exactly when the average of the two numbers is \frac{1}{2}*\frac{55}{6} = \frac{55}{12}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{55}{12} - u) (\frac{55}{12} + u) = 21
To solve for unknown quantity u, substitute these in the product equation rs = 21
\frac{3025}{144} - u^2 = 21
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 21-\frac{3025}{144} = -\frac{1}{144}
Simplify the expression by subtracting \frac{3025}{144} on both sides
u^2 = \frac{1}{144} u = \pm\sqrt{\frac{1}{144}} = \pm \frac{1}{12}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{55}{12} - \frac{1}{12} = 4.500 s = \frac{55}{12} + \frac{1}{12} = 4.667
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}