Solve for x_8
\left\{\begin{matrix}x_{8}=-\frac{3x}{2\left(1-x^{2}\right)}\text{, }&|x|\neq 1\\x_{8}\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=-\frac{\sqrt{16x_{8}^{2}+9}-3}{4x_{8}}\text{; }x=\frac{\sqrt{16x_{8}^{2}+9}+3}{4x_{8}}\text{, }&x_{8}\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
6x^{2}-4x_{8}x\left(x^{2}-1\right)=0
Multiply -1 and 4 to get -4.
6x^{2}-4x_{8}x^{3}+4xx_{8}=0
Use the distributive property to multiply -4x_{8}x by x^{2}-1.
-4x_{8}x^{3}+4xx_{8}=-6x^{2}
Subtract 6x^{2} from both sides. Anything subtracted from zero gives its negation.
\left(-4x^{3}+4x\right)x_{8}=-6x^{2}
Combine all terms containing x_{8}.
\left(4x-4x^{3}\right)x_{8}=-6x^{2}
The equation is in standard form.
\frac{\left(4x-4x^{3}\right)x_{8}}{4x-4x^{3}}=-\frac{6x^{2}}{4x-4x^{3}}
Divide both sides by -4x^{3}+4x.
x_{8}=-\frac{6x^{2}}{4x-4x^{3}}
Dividing by -4x^{3}+4x undoes the multiplication by -4x^{3}+4x.
x_{8}=-\frac{3x}{2\left(1-x^{2}\right)}
Divide -6x^{2} by -4x^{3}+4x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}