Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}=-43+4
Add 4 to both sides.
6x^{2}=-39
Add -43 and 4 to get -39.
x^{2}=\frac{-39}{6}
Divide both sides by 6.
x^{2}=-\frac{13}{2}
Reduce the fraction \frac{-39}{6} to lowest terms by extracting and canceling out 3.
x=\frac{\sqrt{26}i}{2} x=-\frac{\sqrt{26}i}{2}
The equation is now solved.
6x^{2}-4+43=0
Add 43 to both sides.
6x^{2}+39=0
Add -4 and 43 to get 39.
x=\frac{0±\sqrt{0^{2}-4\times 6\times 39}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 0 for b, and 39 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\times 39}}{2\times 6}
Square 0.
x=\frac{0±\sqrt{-24\times 39}}{2\times 6}
Multiply -4 times 6.
x=\frac{0±\sqrt{-936}}{2\times 6}
Multiply -24 times 39.
x=\frac{0±6\sqrt{26}i}{2\times 6}
Take the square root of -936.
x=\frac{0±6\sqrt{26}i}{12}
Multiply 2 times 6.
x=\frac{\sqrt{26}i}{2}
Now solve the equation x=\frac{0±6\sqrt{26}i}{12} when ± is plus.
x=-\frac{\sqrt{26}i}{2}
Now solve the equation x=\frac{0±6\sqrt{26}i}{12} when ± is minus.
x=\frac{\sqrt{26}i}{2} x=-\frac{\sqrt{26}i}{2}
The equation is now solved.