Evaluate
-x^{2}-8x-2
Factor
-\left(x-\left(-\sqrt{14}-4\right)\right)\left(x-\left(\sqrt{14}-4\right)\right)
Graph
Share
Copied to clipboard
-x^{2}-3x-5x-2
Combine 6x^{2} and -7x^{2} to get -x^{2}.
-x^{2}-8x-2
Combine -3x and -5x to get -8x.
factor(-x^{2}-3x-5x-2)
Combine 6x^{2} and -7x^{2} to get -x^{2}.
factor(-x^{2}-8x-2)
Combine -3x and -5x to get -8x.
-x^{2}-8x-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+4\left(-2\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-8\right)±\sqrt{64-8}}{2\left(-1\right)}
Multiply 4 times -2.
x=\frac{-\left(-8\right)±\sqrt{56}}{2\left(-1\right)}
Add 64 to -8.
x=\frac{-\left(-8\right)±2\sqrt{14}}{2\left(-1\right)}
Take the square root of 56.
x=\frac{8±2\sqrt{14}}{2\left(-1\right)}
The opposite of -8 is 8.
x=\frac{8±2\sqrt{14}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{14}+8}{-2}
Now solve the equation x=\frac{8±2\sqrt{14}}{-2} when ± is plus. Add 8 to 2\sqrt{14}.
x=-\left(\sqrt{14}+4\right)
Divide 8+2\sqrt{14} by -2.
x=\frac{8-2\sqrt{14}}{-2}
Now solve the equation x=\frac{8±2\sqrt{14}}{-2} when ± is minus. Subtract 2\sqrt{14} from 8.
x=\sqrt{14}-4
Divide 8-2\sqrt{14} by -2.
-x^{2}-8x-2=-\left(x-\left(-\left(\sqrt{14}+4\right)\right)\right)\left(x-\left(\sqrt{14}-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\left(4+\sqrt{14}\right) for x_{1} and -4+\sqrt{14} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}