Solve for x
x=\frac{\sqrt{705}}{60}+\frac{1}{4}\approx 0.692530602
x=-\frac{\sqrt{705}}{60}+\frac{1}{4}\approx -0.192530602
Graph
Share
Copied to clipboard
6x^{2}-3x-\frac{4}{5}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 6\left(-\frac{4}{5}\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -3 for b, and -\frac{4}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 6\left(-\frac{4}{5}\right)}}{2\times 6}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-24\left(-\frac{4}{5}\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-3\right)±\sqrt{9+\frac{96}{5}}}{2\times 6}
Multiply -24 times -\frac{4}{5}.
x=\frac{-\left(-3\right)±\sqrt{\frac{141}{5}}}{2\times 6}
Add 9 to \frac{96}{5}.
x=\frac{-\left(-3\right)±\frac{\sqrt{705}}{5}}{2\times 6}
Take the square root of \frac{141}{5}.
x=\frac{3±\frac{\sqrt{705}}{5}}{2\times 6}
The opposite of -3 is 3.
x=\frac{3±\frac{\sqrt{705}}{5}}{12}
Multiply 2 times 6.
x=\frac{\frac{\sqrt{705}}{5}+3}{12}
Now solve the equation x=\frac{3±\frac{\sqrt{705}}{5}}{12} when ± is plus. Add 3 to \frac{\sqrt{705}}{5}.
x=\frac{\sqrt{705}}{60}+\frac{1}{4}
Divide 3+\frac{\sqrt{705}}{5} by 12.
x=\frac{-\frac{\sqrt{705}}{5}+3}{12}
Now solve the equation x=\frac{3±\frac{\sqrt{705}}{5}}{12} when ± is minus. Subtract \frac{\sqrt{705}}{5} from 3.
x=-\frac{\sqrt{705}}{60}+\frac{1}{4}
Divide 3-\frac{\sqrt{705}}{5} by 12.
x=\frac{\sqrt{705}}{60}+\frac{1}{4} x=-\frac{\sqrt{705}}{60}+\frac{1}{4}
The equation is now solved.
6x^{2}-3x-\frac{4}{5}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6x^{2}-3x-\frac{4}{5}-\left(-\frac{4}{5}\right)=-\left(-\frac{4}{5}\right)
Add \frac{4}{5} to both sides of the equation.
6x^{2}-3x=-\left(-\frac{4}{5}\right)
Subtracting -\frac{4}{5} from itself leaves 0.
6x^{2}-3x=\frac{4}{5}
Subtract -\frac{4}{5} from 0.
\frac{6x^{2}-3x}{6}=\frac{\frac{4}{5}}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{3}{6}\right)x=\frac{\frac{4}{5}}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{1}{2}x=\frac{\frac{4}{5}}{6}
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{1}{2}x=\frac{2}{15}
Divide \frac{4}{5} by 6.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{2}{15}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{2}{15}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{47}{240}
Add \frac{2}{15} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=\frac{47}{240}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{47}{240}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{705}}{60} x-\frac{1}{4}=-\frac{\sqrt{705}}{60}
Simplify.
x=\frac{\sqrt{705}}{60}+\frac{1}{4} x=-\frac{\sqrt{705}}{60}+\frac{1}{4}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}