Solve for x
x = \frac{\sqrt{91} + 1}{6} \approx 1.756565336
x=\frac{1-\sqrt{91}}{6}\approx -1.423232002
Graph
Share
Copied to clipboard
6x^{2}-2x=15
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
6x^{2}-2x-15=15-15
Subtract 15 from both sides of the equation.
6x^{2}-2x-15=0
Subtracting 15 from itself leaves 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 6\left(-15\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -2 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 6\left(-15\right)}}{2\times 6}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-24\left(-15\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-2\right)±\sqrt{4+360}}{2\times 6}
Multiply -24 times -15.
x=\frac{-\left(-2\right)±\sqrt{364}}{2\times 6}
Add 4 to 360.
x=\frac{-\left(-2\right)±2\sqrt{91}}{2\times 6}
Take the square root of 364.
x=\frac{2±2\sqrt{91}}{2\times 6}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{91}}{12}
Multiply 2 times 6.
x=\frac{2\sqrt{91}+2}{12}
Now solve the equation x=\frac{2±2\sqrt{91}}{12} when ± is plus. Add 2 to 2\sqrt{91}.
x=\frac{\sqrt{91}+1}{6}
Divide 2+2\sqrt{91} by 12.
x=\frac{2-2\sqrt{91}}{12}
Now solve the equation x=\frac{2±2\sqrt{91}}{12} when ± is minus. Subtract 2\sqrt{91} from 2.
x=\frac{1-\sqrt{91}}{6}
Divide 2-2\sqrt{91} by 12.
x=\frac{\sqrt{91}+1}{6} x=\frac{1-\sqrt{91}}{6}
The equation is now solved.
6x^{2}-2x=15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6x^{2}-2x}{6}=\frac{15}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{2}{6}\right)x=\frac{15}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{1}{3}x=\frac{15}{6}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{3}x=\frac{5}{2}
Reduce the fraction \frac{15}{6} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{5}{2}+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{5}{2}+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{91}{36}
Add \frac{5}{2} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{6}\right)^{2}=\frac{91}{36}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{91}{36}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{\sqrt{91}}{6} x-\frac{1}{6}=-\frac{\sqrt{91}}{6}
Simplify.
x=\frac{\sqrt{91}+1}{6} x=\frac{1-\sqrt{91}}{6}
Add \frac{1}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}