Solve for x
x = \frac{\sqrt{103} + 7}{6} \approx 2.858148594
x=\frac{7-\sqrt{103}}{6}\approx -0.524815261
Graph
Share
Copied to clipboard
6x^{2}-14x-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 6\left(-9\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -14 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 6\left(-9\right)}}{2\times 6}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-24\left(-9\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-14\right)±\sqrt{196+216}}{2\times 6}
Multiply -24 times -9.
x=\frac{-\left(-14\right)±\sqrt{412}}{2\times 6}
Add 196 to 216.
x=\frac{-\left(-14\right)±2\sqrt{103}}{2\times 6}
Take the square root of 412.
x=\frac{14±2\sqrt{103}}{2\times 6}
The opposite of -14 is 14.
x=\frac{14±2\sqrt{103}}{12}
Multiply 2 times 6.
x=\frac{2\sqrt{103}+14}{12}
Now solve the equation x=\frac{14±2\sqrt{103}}{12} when ± is plus. Add 14 to 2\sqrt{103}.
x=\frac{\sqrt{103}+7}{6}
Divide 14+2\sqrt{103} by 12.
x=\frac{14-2\sqrt{103}}{12}
Now solve the equation x=\frac{14±2\sqrt{103}}{12} when ± is minus. Subtract 2\sqrt{103} from 14.
x=\frac{7-\sqrt{103}}{6}
Divide 14-2\sqrt{103} by 12.
x=\frac{\sqrt{103}+7}{6} x=\frac{7-\sqrt{103}}{6}
The equation is now solved.
6x^{2}-14x-9=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6x^{2}-14x-9-\left(-9\right)=-\left(-9\right)
Add 9 to both sides of the equation.
6x^{2}-14x=-\left(-9\right)
Subtracting -9 from itself leaves 0.
6x^{2}-14x=9
Subtract -9 from 0.
\frac{6x^{2}-14x}{6}=\frac{9}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{14}{6}\right)x=\frac{9}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{7}{3}x=\frac{9}{6}
Reduce the fraction \frac{-14}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{7}{3}x=\frac{3}{2}
Reduce the fraction \frac{9}{6} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{7}{3}x+\left(-\frac{7}{6}\right)^{2}=\frac{3}{2}+\left(-\frac{7}{6}\right)^{2}
Divide -\frac{7}{3}, the coefficient of the x term, by 2 to get -\frac{7}{6}. Then add the square of -\frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{3}{2}+\frac{49}{36}
Square -\frac{7}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{103}{36}
Add \frac{3}{2} to \frac{49}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{6}\right)^{2}=\frac{103}{36}
Factor x^{2}-\frac{7}{3}x+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{6}\right)^{2}}=\sqrt{\frac{103}{36}}
Take the square root of both sides of the equation.
x-\frac{7}{6}=\frac{\sqrt{103}}{6} x-\frac{7}{6}=-\frac{\sqrt{103}}{6}
Simplify.
x=\frac{\sqrt{103}+7}{6} x=\frac{7-\sqrt{103}}{6}
Add \frac{7}{6} to both sides of the equation.
x ^ 2 -\frac{7}{3}x -\frac{3}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 6
r + s = \frac{7}{3} rs = -\frac{3}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{7}{6} - u s = \frac{7}{6} + u
Two numbers r and s sum up to \frac{7}{3} exactly when the average of the two numbers is \frac{1}{2}*\frac{7}{3} = \frac{7}{6}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{7}{6} - u) (\frac{7}{6} + u) = -\frac{3}{2}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{3}{2}
\frac{49}{36} - u^2 = -\frac{3}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{3}{2}-\frac{49}{36} = -\frac{103}{36}
Simplify the expression by subtracting \frac{49}{36} on both sides
u^2 = \frac{103}{36} u = \pm\sqrt{\frac{103}{36}} = \pm \frac{\sqrt{103}}{6}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{7}{6} - \frac{\sqrt{103}}{6} = -0.525 s = \frac{7}{6} + \frac{\sqrt{103}}{6} = 2.858
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}