Solve for x (complex solution)
x=\frac{\pi +i\sqrt{-\pi ^{2}+72\pi }}{12}\approx 0.261799388+1.225666108i
x=\frac{-i\sqrt{-\pi ^{2}+72\pi }+\pi }{12}\approx 0.261799388-1.225666108i
Graph
Share
Copied to clipboard
6x^{2}-\pi x+3\pi =0
Reorder the terms.
6x^{2}+\left(-\pi \right)x+3\pi =0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\pi \right)±\sqrt{\left(-\pi \right)^{2}-4\times 6\times 3\pi }}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -\pi for b, and 3\pi for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\pi \right)±\sqrt{\pi ^{2}-4\times 6\times 3\pi }}{2\times 6}
Square -\pi .
x=\frac{-\left(-\pi \right)±\sqrt{\pi ^{2}-24\times 3\pi }}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-\pi \right)±\sqrt{\pi ^{2}-72\pi }}{2\times 6}
Multiply -24 times 3\pi .
x=\frac{-\left(-\pi \right)±\sqrt{\pi \left(\pi -72\right)}}{2\times 6}
Add \pi ^{2} to -72\pi .
x=\frac{-\left(-\pi \right)±i\sqrt{\pi \left(72-\pi \right)}}{2\times 6}
Take the square root of \pi \left(\pi -72\right).
x=\frac{\pi ±i\sqrt{\pi \left(72-\pi \right)}}{2\times 6}
The opposite of -\pi is \pi .
x=\frac{\pi ±i\sqrt{\pi \left(72-\pi \right)}}{12}
Multiply 2 times 6.
x=\frac{\pi +i\sqrt{\pi \left(72-\pi \right)}}{12}
Now solve the equation x=\frac{\pi ±i\sqrt{\pi \left(72-\pi \right)}}{12} when ± is plus. Add \pi to i\sqrt{\pi \left(-\pi +72\right)}.
x=\frac{-i\sqrt{\pi \left(72-\pi \right)}+\pi }{12}
Now solve the equation x=\frac{\pi ±i\sqrt{\pi \left(72-\pi \right)}}{12} when ± is minus. Subtract i\sqrt{\pi \left(-\pi +72\right)} from \pi .
x=\frac{\pi +i\sqrt{\pi \left(72-\pi \right)}}{12} x=\frac{-i\sqrt{\pi \left(72-\pi \right)}+\pi }{12}
The equation is now solved.
6x^{2}-\pi x=-3\pi
Subtract 3\pi from both sides. Anything subtracted from zero gives its negation.
6x^{2}+\left(-\pi \right)x=-3\pi
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6x^{2}+\left(-\pi \right)x}{6}=-\frac{3\pi }{6}
Divide both sides by 6.
x^{2}+\left(-\frac{\pi }{6}\right)x=-\frac{3\pi }{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\left(-\frac{\pi }{6}\right)x=-\frac{\pi }{2}
Divide -3\pi by 6.
x^{2}+\left(-\frac{\pi }{6}\right)x+\left(-\frac{\pi }{12}\right)^{2}=-\frac{\pi }{2}+\left(-\frac{\pi }{12}\right)^{2}
Divide -\frac{\pi }{6}, the coefficient of the x term, by 2 to get -\frac{\pi }{12}. Then add the square of -\frac{\pi }{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\left(-\frac{\pi }{6}\right)x+\frac{\pi ^{2}}{144}=-\frac{\pi }{2}+\frac{\pi ^{2}}{144}
Square -\frac{\pi }{12}.
x^{2}+\left(-\frac{\pi }{6}\right)x+\frac{\pi ^{2}}{144}=\frac{\pi \left(\pi -72\right)}{144}
Add -\frac{\pi }{2} to \frac{\pi ^{2}}{144}.
\left(x-\frac{\pi }{12}\right)^{2}=\frac{\pi \left(\pi -72\right)}{144}
Factor x^{2}+\left(-\frac{\pi }{6}\right)x+\frac{\pi ^{2}}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{\pi }{12}\right)^{2}}=\sqrt{\frac{\pi \left(\pi -72\right)}{144}}
Take the square root of both sides of the equation.
x-\frac{\pi }{12}=\frac{i\sqrt{\pi \left(72-\pi \right)}}{12} x-\frac{\pi }{12}=-\frac{i\sqrt{\pi \left(72-\pi \right)}}{12}
Simplify.
x=\frac{\pi +i\sqrt{\pi \left(72-\pi \right)}}{12} x=\frac{-i\sqrt{\pi \left(72-\pi \right)}+\pi }{12}
Add \frac{\pi }{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}