Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(6x^{2}\left(x+1\right)^{-\frac{1}{3}}\left(x^{3}-6x^{2}+12x-8\right)-3x\left(x+1\right)^{\frac{2}{3}}\left(x-2\right)^{2})
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-2\right)^{3}.
factor(6\left(x+1\right)^{-\frac{1}{3}}x^{5}-36\left(x+1\right)^{-\frac{1}{3}}x^{4}+72\left(x+1\right)^{-\frac{1}{3}}x^{3}-48\left(x+1\right)^{-\frac{1}{3}}x^{2}-3x\left(x+1\right)^{\frac{2}{3}}\left(x-2\right)^{2})
Use the distributive property to multiply 6x^{2}\left(x+1\right)^{-\frac{1}{3}} by x^{3}-6x^{2}+12x-8.
factor(6\left(x+1\right)^{-\frac{1}{3}}x^{5}-36\left(x+1\right)^{-\frac{1}{3}}x^{4}+72\left(x+1\right)^{-\frac{1}{3}}x^{3}-48\left(x+1\right)^{-\frac{1}{3}}x^{2}-3x\left(x+1\right)^{\frac{2}{3}}\left(x^{2}-4x+4\right))
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
factor(6\left(x+1\right)^{-\frac{1}{3}}x^{5}-36\left(x+1\right)^{-\frac{1}{3}}x^{4}+72\left(x+1\right)^{-\frac{1}{3}}x^{3}-48\left(x+1\right)^{-\frac{1}{3}}x^{2}-3\left(x+1\right)^{\frac{2}{3}}x^{3}+12\left(x+1\right)^{\frac{2}{3}}x^{2}-12\left(x+1\right)^{\frac{2}{3}}x)
Use the distributive property to multiply -3x\left(x+1\right)^{\frac{2}{3}} by x^{2}-4x+4.
3\left(\frac{2x^{5}}{\sqrt[3]{x+1}}-\frac{12x^{4}}{\sqrt[3]{x+1}}+\frac{24x^{3}}{\sqrt[3]{x+1}}-\frac{16x^{2}}{\sqrt[3]{x+1}}-\left(x+1\right)^{\frac{2}{3}}x^{3}+4\left(x+1\right)^{\frac{2}{3}}x^{2}-4\left(x+1\right)^{\frac{2}{3}}x\right)
Factor out 3.
x\left(\frac{2x^{4}}{\sqrt[3]{x+1}}-\frac{12x^{3}}{\sqrt[3]{x+1}}+\frac{24x^{2}}{\sqrt[3]{x+1}}-\frac{16x}{\sqrt[3]{x+1}}-\left(x+1\right)^{\frac{2}{3}}x^{2}+4\left(x+1\right)^{\frac{2}{3}}x-4\left(x+1\right)^{\frac{2}{3}}\right)
Consider 2\left(x+1\right)^{-\frac{1}{3}}x^{5}-12\left(x+1\right)^{-\frac{1}{3}}x^{4}+24\left(x+1\right)^{-\frac{1}{3}}x^{3}-16\left(x+1\right)^{-\frac{1}{3}}x^{2}-\left(x+1\right)^{\frac{2}{3}}x^{3}+4\left(x+1\right)^{\frac{2}{3}}x^{2}-4\left(x+1\right)^{\frac{2}{3}}x. Factor out x.
3x\left(\frac{2x^{4}}{\sqrt[3]{x+1}}-\frac{12x^{3}}{\sqrt[3]{x+1}}+\frac{24x^{2}}{\sqrt[3]{x+1}}-\frac{16x}{\sqrt[3]{x+1}}-\left(x+1\right)^{\frac{2}{3}}x^{2}+4\left(x+1\right)^{\frac{2}{3}}x-4\left(x+1\right)^{\frac{2}{3}}\right)
Rewrite the complete factored expression.