Solve for x
x=\frac{\sqrt{1705}}{60}+\frac{1}{12}\approx 0.771527427
x=-\frac{\sqrt{1705}}{60}+\frac{1}{12}\approx -0.604860761
Graph
Share
Copied to clipboard
6x^{2}-x=2.8
Subtract x from both sides.
6x^{2}-x-2.8=0
Subtract 2.8 from both sides.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-2.8\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -1 for b, and -2.8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-2.8\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-1\right)±\sqrt{1+67.2}}{2\times 6}
Multiply -24 times -2.8.
x=\frac{-\left(-1\right)±\sqrt{68.2}}{2\times 6}
Add 1 to 67.2.
x=\frac{-\left(-1\right)±\frac{\sqrt{1705}}{5}}{2\times 6}
Take the square root of 68.2.
x=\frac{1±\frac{\sqrt{1705}}{5}}{2\times 6}
The opposite of -1 is 1.
x=\frac{1±\frac{\sqrt{1705}}{5}}{12}
Multiply 2 times 6.
x=\frac{\frac{\sqrt{1705}}{5}+1}{12}
Now solve the equation x=\frac{1±\frac{\sqrt{1705}}{5}}{12} when ± is plus. Add 1 to \frac{\sqrt{1705}}{5}.
x=\frac{\sqrt{1705}}{60}+\frac{1}{12}
Divide 1+\frac{\sqrt{1705}}{5} by 12.
x=\frac{-\frac{\sqrt{1705}}{5}+1}{12}
Now solve the equation x=\frac{1±\frac{\sqrt{1705}}{5}}{12} when ± is minus. Subtract \frac{\sqrt{1705}}{5} from 1.
x=-\frac{\sqrt{1705}}{60}+\frac{1}{12}
Divide 1-\frac{\sqrt{1705}}{5} by 12.
x=\frac{\sqrt{1705}}{60}+\frac{1}{12} x=-\frac{\sqrt{1705}}{60}+\frac{1}{12}
The equation is now solved.
6x^{2}-x=2.8
Subtract x from both sides.
\frac{6x^{2}-x}{6}=\frac{2.8}{6}
Divide both sides by 6.
x^{2}-\frac{1}{6}x=\frac{2.8}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{1}{6}x=\frac{7}{15}
Divide 2.8 by 6.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=\frac{7}{15}+\left(-\frac{1}{12}\right)^{2}
Divide -\frac{1}{6}, the coefficient of the x term, by 2 to get -\frac{1}{12}. Then add the square of -\frac{1}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{7}{15}+\frac{1}{144}
Square -\frac{1}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{341}{720}
Add \frac{7}{15} to \frac{1}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{12}\right)^{2}=\frac{341}{720}
Factor x^{2}-\frac{1}{6}x+\frac{1}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{341}{720}}
Take the square root of both sides of the equation.
x-\frac{1}{12}=\frac{\sqrt{1705}}{60} x-\frac{1}{12}=-\frac{\sqrt{1705}}{60}
Simplify.
x=\frac{\sqrt{1705}}{60}+\frac{1}{12} x=-\frac{\sqrt{1705}}{60}+\frac{1}{12}
Add \frac{1}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}