Factor
2\left(3x-5\right)\left(x+3\right)
Evaluate
2\left(3x-5\right)\left(x+3\right)
Graph
Share
Copied to clipboard
2\left(3x^{2}+4x-15\right)
Factor out 2.
a+b=4 ab=3\left(-15\right)=-45
Consider 3x^{2}+4x-15. Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
-1,45 -3,15 -5,9
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -45.
-1+45=44 -3+15=12 -5+9=4
Calculate the sum for each pair.
a=-5 b=9
The solution is the pair that gives sum 4.
\left(3x^{2}-5x\right)+\left(9x-15\right)
Rewrite 3x^{2}+4x-15 as \left(3x^{2}-5x\right)+\left(9x-15\right).
x\left(3x-5\right)+3\left(3x-5\right)
Factor out x in the first and 3 in the second group.
\left(3x-5\right)\left(x+3\right)
Factor out common term 3x-5 by using distributive property.
2\left(3x-5\right)\left(x+3\right)
Rewrite the complete factored expression.
6x^{2}+8x-30=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\times 6\left(-30\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\times 6\left(-30\right)}}{2\times 6}
Square 8.
x=\frac{-8±\sqrt{64-24\left(-30\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-8±\sqrt{64+720}}{2\times 6}
Multiply -24 times -30.
x=\frac{-8±\sqrt{784}}{2\times 6}
Add 64 to 720.
x=\frac{-8±28}{2\times 6}
Take the square root of 784.
x=\frac{-8±28}{12}
Multiply 2 times 6.
x=\frac{20}{12}
Now solve the equation x=\frac{-8±28}{12} when ± is plus. Add -8 to 28.
x=\frac{5}{3}
Reduce the fraction \frac{20}{12} to lowest terms by extracting and canceling out 4.
x=-\frac{36}{12}
Now solve the equation x=\frac{-8±28}{12} when ± is minus. Subtract 28 from -8.
x=-3
Divide -36 by 12.
6x^{2}+8x-30=6\left(x-\frac{5}{3}\right)\left(x-\left(-3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{3} for x_{1} and -3 for x_{2}.
6x^{2}+8x-30=6\left(x-\frac{5}{3}\right)\left(x+3\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
6x^{2}+8x-30=6\times \frac{3x-5}{3}\left(x+3\right)
Subtract \frac{5}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}+8x-30=2\left(3x-5\right)\left(x+3\right)
Cancel out 3, the greatest common factor in 6 and 3.
x ^ 2 +\frac{4}{3}x -5 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 6
r + s = -\frac{4}{3} rs = -5
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{2}{3} - u s = -\frac{2}{3} + u
Two numbers r and s sum up to -\frac{4}{3} exactly when the average of the two numbers is \frac{1}{2}*-\frac{4}{3} = -\frac{2}{3}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{2}{3} - u) (-\frac{2}{3} + u) = -5
To solve for unknown quantity u, substitute these in the product equation rs = -5
\frac{4}{9} - u^2 = -5
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -5-\frac{4}{9} = -\frac{49}{9}
Simplify the expression by subtracting \frac{4}{9} on both sides
u^2 = \frac{49}{9} u = \pm\sqrt{\frac{49}{9}} = \pm \frac{7}{3}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{2}{3} - \frac{7}{3} = -3 s = -\frac{2}{3} + \frac{7}{3} = 1.667
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}