Solve for x
x = \frac{\sqrt{229} + 7}{10} \approx 2.213274595
x=\frac{7-\sqrt{229}}{10}\approx -0.813274595
Graph
Share
Copied to clipboard
6x^{2}+7x+9-11x^{2}=0
Subtract 11x^{2} from both sides.
-5x^{2}+7x+9=0
Combine 6x^{2} and -11x^{2} to get -5x^{2}.
x=\frac{-7±\sqrt{7^{2}-4\left(-5\right)\times 9}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 7 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-5\right)\times 9}}{2\left(-5\right)}
Square 7.
x=\frac{-7±\sqrt{49+20\times 9}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-7±\sqrt{49+180}}{2\left(-5\right)}
Multiply 20 times 9.
x=\frac{-7±\sqrt{229}}{2\left(-5\right)}
Add 49 to 180.
x=\frac{-7±\sqrt{229}}{-10}
Multiply 2 times -5.
x=\frac{\sqrt{229}-7}{-10}
Now solve the equation x=\frac{-7±\sqrt{229}}{-10} when ± is plus. Add -7 to \sqrt{229}.
x=\frac{7-\sqrt{229}}{10}
Divide -7+\sqrt{229} by -10.
x=\frac{-\sqrt{229}-7}{-10}
Now solve the equation x=\frac{-7±\sqrt{229}}{-10} when ± is minus. Subtract \sqrt{229} from -7.
x=\frac{\sqrt{229}+7}{10}
Divide -7-\sqrt{229} by -10.
x=\frac{7-\sqrt{229}}{10} x=\frac{\sqrt{229}+7}{10}
The equation is now solved.
6x^{2}+7x+9-11x^{2}=0
Subtract 11x^{2} from both sides.
-5x^{2}+7x+9=0
Combine 6x^{2} and -11x^{2} to get -5x^{2}.
-5x^{2}+7x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
\frac{-5x^{2}+7x}{-5}=-\frac{9}{-5}
Divide both sides by -5.
x^{2}+\frac{7}{-5}x=-\frac{9}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-\frac{7}{5}x=-\frac{9}{-5}
Divide 7 by -5.
x^{2}-\frac{7}{5}x=\frac{9}{5}
Divide -9 by -5.
x^{2}-\frac{7}{5}x+\left(-\frac{7}{10}\right)^{2}=\frac{9}{5}+\left(-\frac{7}{10}\right)^{2}
Divide -\frac{7}{5}, the coefficient of the x term, by 2 to get -\frac{7}{10}. Then add the square of -\frac{7}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{5}x+\frac{49}{100}=\frac{9}{5}+\frac{49}{100}
Square -\frac{7}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{5}x+\frac{49}{100}=\frac{229}{100}
Add \frac{9}{5} to \frac{49}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{10}\right)^{2}=\frac{229}{100}
Factor x^{2}-\frac{7}{5}x+\frac{49}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{10}\right)^{2}}=\sqrt{\frac{229}{100}}
Take the square root of both sides of the equation.
x-\frac{7}{10}=\frac{\sqrt{229}}{10} x-\frac{7}{10}=-\frac{\sqrt{229}}{10}
Simplify.
x=\frac{\sqrt{229}+7}{10} x=\frac{7-\sqrt{229}}{10}
Add \frac{7}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}