Solve for x
x=4
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Share
Copied to clipboard
6x^{2}+60-39x=0
Subtract 39x from both sides.
2x^{2}+20-13x=0
Divide both sides by 3.
2x^{2}-13x+20=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-13 ab=2\times 20=40
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx+20. To find a and b, set up a system to be solved.
-1,-40 -2,-20 -4,-10 -5,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 40.
-1-40=-41 -2-20=-22 -4-10=-14 -5-8=-13
Calculate the sum for each pair.
a=-8 b=-5
The solution is the pair that gives sum -13.
\left(2x^{2}-8x\right)+\left(-5x+20\right)
Rewrite 2x^{2}-13x+20 as \left(2x^{2}-8x\right)+\left(-5x+20\right).
2x\left(x-4\right)-5\left(x-4\right)
Factor out 2x in the first and -5 in the second group.
\left(x-4\right)\left(2x-5\right)
Factor out common term x-4 by using distributive property.
x=4 x=\frac{5}{2}
To find equation solutions, solve x-4=0 and 2x-5=0.
6x^{2}+60-39x=0
Subtract 39x from both sides.
6x^{2}-39x+60=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-39\right)±\sqrt{\left(-39\right)^{2}-4\times 6\times 60}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -39 for b, and 60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-39\right)±\sqrt{1521-4\times 6\times 60}}{2\times 6}
Square -39.
x=\frac{-\left(-39\right)±\sqrt{1521-24\times 60}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-39\right)±\sqrt{1521-1440}}{2\times 6}
Multiply -24 times 60.
x=\frac{-\left(-39\right)±\sqrt{81}}{2\times 6}
Add 1521 to -1440.
x=\frac{-\left(-39\right)±9}{2\times 6}
Take the square root of 81.
x=\frac{39±9}{2\times 6}
The opposite of -39 is 39.
x=\frac{39±9}{12}
Multiply 2 times 6.
x=\frac{48}{12}
Now solve the equation x=\frac{39±9}{12} when ± is plus. Add 39 to 9.
x=4
Divide 48 by 12.
x=\frac{30}{12}
Now solve the equation x=\frac{39±9}{12} when ± is minus. Subtract 9 from 39.
x=\frac{5}{2}
Reduce the fraction \frac{30}{12} to lowest terms by extracting and canceling out 6.
x=4 x=\frac{5}{2}
The equation is now solved.
6x^{2}+60-39x=0
Subtract 39x from both sides.
6x^{2}-39x=-60
Subtract 60 from both sides. Anything subtracted from zero gives its negation.
\frac{6x^{2}-39x}{6}=-\frac{60}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{39}{6}\right)x=-\frac{60}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{13}{2}x=-\frac{60}{6}
Reduce the fraction \frac{-39}{6} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{13}{2}x=-10
Divide -60 by 6.
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=-10+\left(-\frac{13}{4}\right)^{2}
Divide -\frac{13}{2}, the coefficient of the x term, by 2 to get -\frac{13}{4}. Then add the square of -\frac{13}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{2}x+\frac{169}{16}=-10+\frac{169}{16}
Square -\frac{13}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{9}{16}
Add -10 to \frac{169}{16}.
\left(x-\frac{13}{4}\right)^{2}=\frac{9}{16}
Factor x^{2}-\frac{13}{2}x+\frac{169}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x-\frac{13}{4}=\frac{3}{4} x-\frac{13}{4}=-\frac{3}{4}
Simplify.
x=4 x=\frac{5}{2}
Add \frac{13}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}