Solve for x
x=\frac{2\sqrt{34}-14}{3}\approx -0.779365403
x=\frac{-2\sqrt{34}-14}{3}\approx -8.55396793
Graph
Share
Copied to clipboard
6x^{2}+56x=-40
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
6x^{2}+56x-\left(-40\right)=-40-\left(-40\right)
Add 40 to both sides of the equation.
6x^{2}+56x-\left(-40\right)=0
Subtracting -40 from itself leaves 0.
6x^{2}+56x+40=0
Subtract -40 from 0.
x=\frac{-56±\sqrt{56^{2}-4\times 6\times 40}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 56 for b, and 40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-56±\sqrt{3136-4\times 6\times 40}}{2\times 6}
Square 56.
x=\frac{-56±\sqrt{3136-24\times 40}}{2\times 6}
Multiply -4 times 6.
x=\frac{-56±\sqrt{3136-960}}{2\times 6}
Multiply -24 times 40.
x=\frac{-56±\sqrt{2176}}{2\times 6}
Add 3136 to -960.
x=\frac{-56±8\sqrt{34}}{2\times 6}
Take the square root of 2176.
x=\frac{-56±8\sqrt{34}}{12}
Multiply 2 times 6.
x=\frac{8\sqrt{34}-56}{12}
Now solve the equation x=\frac{-56±8\sqrt{34}}{12} when ± is plus. Add -56 to 8\sqrt{34}.
x=\frac{2\sqrt{34}-14}{3}
Divide -56+8\sqrt{34} by 12.
x=\frac{-8\sqrt{34}-56}{12}
Now solve the equation x=\frac{-56±8\sqrt{34}}{12} when ± is minus. Subtract 8\sqrt{34} from -56.
x=\frac{-2\sqrt{34}-14}{3}
Divide -56-8\sqrt{34} by 12.
x=\frac{2\sqrt{34}-14}{3} x=\frac{-2\sqrt{34}-14}{3}
The equation is now solved.
6x^{2}+56x=-40
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6x^{2}+56x}{6}=-\frac{40}{6}
Divide both sides by 6.
x^{2}+\frac{56}{6}x=-\frac{40}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{28}{3}x=-\frac{40}{6}
Reduce the fraction \frac{56}{6} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{28}{3}x=-\frac{20}{3}
Reduce the fraction \frac{-40}{6} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{28}{3}x+\left(\frac{14}{3}\right)^{2}=-\frac{20}{3}+\left(\frac{14}{3}\right)^{2}
Divide \frac{28}{3}, the coefficient of the x term, by 2 to get \frac{14}{3}. Then add the square of \frac{14}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{28}{3}x+\frac{196}{9}=-\frac{20}{3}+\frac{196}{9}
Square \frac{14}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{28}{3}x+\frac{196}{9}=\frac{136}{9}
Add -\frac{20}{3} to \frac{196}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{14}{3}\right)^{2}=\frac{136}{9}
Factor x^{2}+\frac{28}{3}x+\frac{196}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{14}{3}\right)^{2}}=\sqrt{\frac{136}{9}}
Take the square root of both sides of the equation.
x+\frac{14}{3}=\frac{2\sqrt{34}}{3} x+\frac{14}{3}=-\frac{2\sqrt{34}}{3}
Simplify.
x=\frac{2\sqrt{34}-14}{3} x=\frac{-2\sqrt{34}-14}{3}
Subtract \frac{14}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}