Solve for x (complex solution)
x=\frac{\sqrt{42}i}{3}+1\approx 1+2.160246899i
x=-\frac{\sqrt{42}i}{3}+1\approx 1-2.160246899i
Graph
Share
Copied to clipboard
6x^{2}+39-5=12x
Subtract 5 from both sides.
6x^{2}+34=12x
Subtract 5 from 39 to get 34.
6x^{2}+34-12x=0
Subtract 12x from both sides.
6x^{2}-12x+34=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 6\times 34}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -12 for b, and 34 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 6\times 34}}{2\times 6}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-24\times 34}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-12\right)±\sqrt{144-816}}{2\times 6}
Multiply -24 times 34.
x=\frac{-\left(-12\right)±\sqrt{-672}}{2\times 6}
Add 144 to -816.
x=\frac{-\left(-12\right)±4\sqrt{42}i}{2\times 6}
Take the square root of -672.
x=\frac{12±4\sqrt{42}i}{2\times 6}
The opposite of -12 is 12.
x=\frac{12±4\sqrt{42}i}{12}
Multiply 2 times 6.
x=\frac{12+4\sqrt{42}i}{12}
Now solve the equation x=\frac{12±4\sqrt{42}i}{12} when ± is plus. Add 12 to 4i\sqrt{42}.
x=\frac{\sqrt{42}i}{3}+1
Divide 12+4i\sqrt{42} by 12.
x=\frac{-4\sqrt{42}i+12}{12}
Now solve the equation x=\frac{12±4\sqrt{42}i}{12} when ± is minus. Subtract 4i\sqrt{42} from 12.
x=-\frac{\sqrt{42}i}{3}+1
Divide 12-4i\sqrt{42} by 12.
x=\frac{\sqrt{42}i}{3}+1 x=-\frac{\sqrt{42}i}{3}+1
The equation is now solved.
6x^{2}+39-12x=5
Subtract 12x from both sides.
6x^{2}-12x=5-39
Subtract 39 from both sides.
6x^{2}-12x=-34
Subtract 39 from 5 to get -34.
\frac{6x^{2}-12x}{6}=-\frac{34}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{12}{6}\right)x=-\frac{34}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-2x=-\frac{34}{6}
Divide -12 by 6.
x^{2}-2x=-\frac{17}{3}
Reduce the fraction \frac{-34}{6} to lowest terms by extracting and canceling out 2.
x^{2}-2x+1=-\frac{17}{3}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=-\frac{14}{3}
Add -\frac{17}{3} to 1.
\left(x-1\right)^{2}=-\frac{14}{3}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-\frac{14}{3}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{42}i}{3} x-1=-\frac{\sqrt{42}i}{3}
Simplify.
x=\frac{\sqrt{42}i}{3}+1 x=-\frac{\sqrt{42}i}{3}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}