Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(x^{2}+5x-14\right)
Factor out 6.
a+b=5 ab=1\left(-14\right)=-14
Consider x^{2}+5x-14. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-14. To find a and b, set up a system to be solved.
-1,14 -2,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -14.
-1+14=13 -2+7=5
Calculate the sum for each pair.
a=-2 b=7
The solution is the pair that gives sum 5.
\left(x^{2}-2x\right)+\left(7x-14\right)
Rewrite x^{2}+5x-14 as \left(x^{2}-2x\right)+\left(7x-14\right).
x\left(x-2\right)+7\left(x-2\right)
Factor out x in the first and 7 in the second group.
\left(x-2\right)\left(x+7\right)
Factor out common term x-2 by using distributive property.
6\left(x-2\right)\left(x+7\right)
Rewrite the complete factored expression.
6x^{2}+30x-84=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-30±\sqrt{30^{2}-4\times 6\left(-84\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{900-4\times 6\left(-84\right)}}{2\times 6}
Square 30.
x=\frac{-30±\sqrt{900-24\left(-84\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-30±\sqrt{900+2016}}{2\times 6}
Multiply -24 times -84.
x=\frac{-30±\sqrt{2916}}{2\times 6}
Add 900 to 2016.
x=\frac{-30±54}{2\times 6}
Take the square root of 2916.
x=\frac{-30±54}{12}
Multiply 2 times 6.
x=\frac{24}{12}
Now solve the equation x=\frac{-30±54}{12} when ± is plus. Add -30 to 54.
x=2
Divide 24 by 12.
x=-\frac{84}{12}
Now solve the equation x=\frac{-30±54}{12} when ± is minus. Subtract 54 from -30.
x=-7
Divide -84 by 12.
6x^{2}+30x-84=6\left(x-2\right)\left(x-\left(-7\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and -7 for x_{2}.
6x^{2}+30x-84=6\left(x-2\right)\left(x+7\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
x ^ 2 +5x -14 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 6
r + s = -5 rs = -14
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{5}{2} - u s = -\frac{5}{2} + u
Two numbers r and s sum up to -5 exactly when the average of the two numbers is \frac{1}{2}*-5 = -\frac{5}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{5}{2} - u) (-\frac{5}{2} + u) = -14
To solve for unknown quantity u, substitute these in the product equation rs = -14
\frac{25}{4} - u^2 = -14
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -14-\frac{25}{4} = -\frac{81}{4}
Simplify the expression by subtracting \frac{25}{4} on both sides
u^2 = \frac{81}{4} u = \pm\sqrt{\frac{81}{4}} = \pm \frac{9}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{5}{2} - \frac{9}{2} = -7 s = -\frac{5}{2} + \frac{9}{2} = 2
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.