Solve for x
x=\frac{\sqrt{195}}{6}-\frac{5}{2}\approx -0.172626659
x=-\frac{\sqrt{195}}{6}-\frac{5}{2}\approx -4.827373341
Graph
Share
Copied to clipboard
6x^{2}+30x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{30^{2}-4\times 6\times 5}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 30 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times 6\times 5}}{2\times 6}
Square 30.
x=\frac{-30±\sqrt{900-24\times 5}}{2\times 6}
Multiply -4 times 6.
x=\frac{-30±\sqrt{900-120}}{2\times 6}
Multiply -24 times 5.
x=\frac{-30±\sqrt{780}}{2\times 6}
Add 900 to -120.
x=\frac{-30±2\sqrt{195}}{2\times 6}
Take the square root of 780.
x=\frac{-30±2\sqrt{195}}{12}
Multiply 2 times 6.
x=\frac{2\sqrt{195}-30}{12}
Now solve the equation x=\frac{-30±2\sqrt{195}}{12} when ± is plus. Add -30 to 2\sqrt{195}.
x=\frac{\sqrt{195}}{6}-\frac{5}{2}
Divide -30+2\sqrt{195} by 12.
x=\frac{-2\sqrt{195}-30}{12}
Now solve the equation x=\frac{-30±2\sqrt{195}}{12} when ± is minus. Subtract 2\sqrt{195} from -30.
x=-\frac{\sqrt{195}}{6}-\frac{5}{2}
Divide -30-2\sqrt{195} by 12.
x=\frac{\sqrt{195}}{6}-\frac{5}{2} x=-\frac{\sqrt{195}}{6}-\frac{5}{2}
The equation is now solved.
6x^{2}+30x+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6x^{2}+30x+5-5=-5
Subtract 5 from both sides of the equation.
6x^{2}+30x=-5
Subtracting 5 from itself leaves 0.
\frac{6x^{2}+30x}{6}=-\frac{5}{6}
Divide both sides by 6.
x^{2}+\frac{30}{6}x=-\frac{5}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+5x=-\frac{5}{6}
Divide 30 by 6.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-\frac{5}{6}+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=-\frac{5}{6}+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{65}{12}
Add -\frac{5}{6} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{2}\right)^{2}=\frac{65}{12}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{65}{12}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{\sqrt{195}}{6} x+\frac{5}{2}=-\frac{\sqrt{195}}{6}
Simplify.
x=\frac{\sqrt{195}}{6}-\frac{5}{2} x=-\frac{\sqrt{195}}{6}-\frac{5}{2}
Subtract \frac{5}{2} from both sides of the equation.
x ^ 2 +5x +\frac{5}{6} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 6
r + s = -5 rs = \frac{5}{6}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{5}{2} - u s = -\frac{5}{2} + u
Two numbers r and s sum up to -5 exactly when the average of the two numbers is \frac{1}{2}*-5 = -\frac{5}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{5}{2} - u) (-\frac{5}{2} + u) = \frac{5}{6}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{5}{6}
\frac{25}{4} - u^2 = \frac{5}{6}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{5}{6}-\frac{25}{4} = -\frac{65}{12}
Simplify the expression by subtracting \frac{25}{4} on both sides
u^2 = \frac{65}{12} u = \pm\sqrt{\frac{65}{12}} = \pm \frac{\sqrt{65}}{\sqrt{12}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{5}{2} - \frac{\sqrt{65}}{\sqrt{12}} = -4.827 s = -\frac{5}{2} + \frac{\sqrt{65}}{\sqrt{12}} = -0.173
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}