Factor
6\left(x-\frac{-\sqrt{7}-3}{2}\right)\left(x-\frac{\sqrt{7}-3}{2}\right)
Evaluate
6x^{2}+18x+3
Graph
Share
Copied to clipboard
6x^{2}+18x+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-18±\sqrt{18^{2}-4\times 6\times 3}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-18±\sqrt{324-4\times 6\times 3}}{2\times 6}
Square 18.
x=\frac{-18±\sqrt{324-24\times 3}}{2\times 6}
Multiply -4 times 6.
x=\frac{-18±\sqrt{324-72}}{2\times 6}
Multiply -24 times 3.
x=\frac{-18±\sqrt{252}}{2\times 6}
Add 324 to -72.
x=\frac{-18±6\sqrt{7}}{2\times 6}
Take the square root of 252.
x=\frac{-18±6\sqrt{7}}{12}
Multiply 2 times 6.
x=\frac{6\sqrt{7}-18}{12}
Now solve the equation x=\frac{-18±6\sqrt{7}}{12} when ± is plus. Add -18 to 6\sqrt{7}.
x=\frac{\sqrt{7}-3}{2}
Divide -18+6\sqrt{7} by 12.
x=\frac{-6\sqrt{7}-18}{12}
Now solve the equation x=\frac{-18±6\sqrt{7}}{12} when ± is minus. Subtract 6\sqrt{7} from -18.
x=\frac{-\sqrt{7}-3}{2}
Divide -18-6\sqrt{7} by 12.
6x^{2}+18x+3=6\left(x-\frac{\sqrt{7}-3}{2}\right)\left(x-\frac{-\sqrt{7}-3}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-3+\sqrt{7}}{2} for x_{1} and \frac{-3-\sqrt{7}}{2} for x_{2}.
x ^ 2 +3x +\frac{1}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 6
r + s = -3 rs = \frac{1}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{3}{2} - u s = -\frac{3}{2} + u
Two numbers r and s sum up to -3 exactly when the average of the two numbers is \frac{1}{2}*-3 = -\frac{3}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{3}{2} - u) (-\frac{3}{2} + u) = \frac{1}{2}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{1}{2}
\frac{9}{4} - u^2 = \frac{1}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{1}{2}-\frac{9}{4} = -\frac{7}{4}
Simplify the expression by subtracting \frac{9}{4} on both sides
u^2 = \frac{7}{4} u = \pm\sqrt{\frac{7}{4}} = \pm \frac{\sqrt{7}}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{3}{2} - \frac{\sqrt{7}}{2} = -2.823 s = -\frac{3}{2} + \frac{\sqrt{7}}{2} = -0.177
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}