Solve for x
x=\frac{\sqrt{57}-5}{4}\approx 0.637458609
x=\frac{-\sqrt{57}-5}{4}\approx -3.137458609
Graph
Share
Copied to clipboard
6x^{2}+15x-9=3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
6x^{2}+15x-9-3=3-3
Subtract 3 from both sides of the equation.
6x^{2}+15x-9-3=0
Subtracting 3 from itself leaves 0.
6x^{2}+15x-12=0
Subtract 3 from -9.
x=\frac{-15±\sqrt{15^{2}-4\times 6\left(-12\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 15 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\times 6\left(-12\right)}}{2\times 6}
Square 15.
x=\frac{-15±\sqrt{225-24\left(-12\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-15±\sqrt{225+288}}{2\times 6}
Multiply -24 times -12.
x=\frac{-15±\sqrt{513}}{2\times 6}
Add 225 to 288.
x=\frac{-15±3\sqrt{57}}{2\times 6}
Take the square root of 513.
x=\frac{-15±3\sqrt{57}}{12}
Multiply 2 times 6.
x=\frac{3\sqrt{57}-15}{12}
Now solve the equation x=\frac{-15±3\sqrt{57}}{12} when ± is plus. Add -15 to 3\sqrt{57}.
x=\frac{\sqrt{57}-5}{4}
Divide -15+3\sqrt{57} by 12.
x=\frac{-3\sqrt{57}-15}{12}
Now solve the equation x=\frac{-15±3\sqrt{57}}{12} when ± is minus. Subtract 3\sqrt{57} from -15.
x=\frac{-\sqrt{57}-5}{4}
Divide -15-3\sqrt{57} by 12.
x=\frac{\sqrt{57}-5}{4} x=\frac{-\sqrt{57}-5}{4}
The equation is now solved.
6x^{2}+15x-9=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6x^{2}+15x-9-\left(-9\right)=3-\left(-9\right)
Add 9 to both sides of the equation.
6x^{2}+15x=3-\left(-9\right)
Subtracting -9 from itself leaves 0.
6x^{2}+15x=12
Subtract -9 from 3.
\frac{6x^{2}+15x}{6}=\frac{12}{6}
Divide both sides by 6.
x^{2}+\frac{15}{6}x=\frac{12}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{5}{2}x=\frac{12}{6}
Reduce the fraction \frac{15}{6} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{5}{2}x=2
Divide 12 by 6.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=2+\left(\frac{5}{4}\right)^{2}
Divide \frac{5}{2}, the coefficient of the x term, by 2 to get \frac{5}{4}. Then add the square of \frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{2}x+\frac{25}{16}=2+\frac{25}{16}
Square \frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{57}{16}
Add 2 to \frac{25}{16}.
\left(x+\frac{5}{4}\right)^{2}=\frac{57}{16}
Factor x^{2}+\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{57}{16}}
Take the square root of both sides of the equation.
x+\frac{5}{4}=\frac{\sqrt{57}}{4} x+\frac{5}{4}=-\frac{\sqrt{57}}{4}
Simplify.
x=\frac{\sqrt{57}-5}{4} x=\frac{-\sqrt{57}-5}{4}
Subtract \frac{5}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}