Solve for x (complex solution)
x=\frac{\sqrt{14}i}{6}-\frac{1}{3}\approx -0.333333333+0.623609564i
x=-\frac{\sqrt{14}i}{6}-\frac{1}{3}\approx -0.333333333-0.623609564i
Graph
Share
Copied to clipboard
6x^{2}+15x-11x=-3
Subtract 11x from both sides.
6x^{2}+4x=-3
Combine 15x and -11x to get 4x.
6x^{2}+4x+3=0
Add 3 to both sides.
x=\frac{-4±\sqrt{4^{2}-4\times 6\times 3}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 4 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 6\times 3}}{2\times 6}
Square 4.
x=\frac{-4±\sqrt{16-24\times 3}}{2\times 6}
Multiply -4 times 6.
x=\frac{-4±\sqrt{16-72}}{2\times 6}
Multiply -24 times 3.
x=\frac{-4±\sqrt{-56}}{2\times 6}
Add 16 to -72.
x=\frac{-4±2\sqrt{14}i}{2\times 6}
Take the square root of -56.
x=\frac{-4±2\sqrt{14}i}{12}
Multiply 2 times 6.
x=\frac{-4+2\sqrt{14}i}{12}
Now solve the equation x=\frac{-4±2\sqrt{14}i}{12} when ± is plus. Add -4 to 2i\sqrt{14}.
x=\frac{\sqrt{14}i}{6}-\frac{1}{3}
Divide -4+2i\sqrt{14} by 12.
x=\frac{-2\sqrt{14}i-4}{12}
Now solve the equation x=\frac{-4±2\sqrt{14}i}{12} when ± is minus. Subtract 2i\sqrt{14} from -4.
x=-\frac{\sqrt{14}i}{6}-\frac{1}{3}
Divide -4-2i\sqrt{14} by 12.
x=\frac{\sqrt{14}i}{6}-\frac{1}{3} x=-\frac{\sqrt{14}i}{6}-\frac{1}{3}
The equation is now solved.
6x^{2}+15x-11x=-3
Subtract 11x from both sides.
6x^{2}+4x=-3
Combine 15x and -11x to get 4x.
\frac{6x^{2}+4x}{6}=-\frac{3}{6}
Divide both sides by 6.
x^{2}+\frac{4}{6}x=-\frac{3}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{2}{3}x=-\frac{3}{6}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{2}{3}x=-\frac{1}{2}
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=-\frac{1}{2}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=-\frac{1}{2}+\frac{1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=-\frac{7}{18}
Add -\frac{1}{2} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=-\frac{7}{18}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{-\frac{7}{18}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{\sqrt{14}i}{6} x+\frac{1}{3}=-\frac{\sqrt{14}i}{6}
Simplify.
x=\frac{\sqrt{14}i}{6}-\frac{1}{3} x=-\frac{\sqrt{14}i}{6}-\frac{1}{3}
Subtract \frac{1}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}