Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(2x^{2}+5x\right)
Factor out 3.
x\left(2x+5\right)
Consider 2x^{2}+5x. Factor out x.
3x\left(2x+5\right)
Rewrite the complete factored expression.
6x^{2}+15x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-15±\sqrt{15^{2}}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-15±15}{2\times 6}
Take the square root of 15^{2}.
x=\frac{-15±15}{12}
Multiply 2 times 6.
x=\frac{0}{12}
Now solve the equation x=\frac{-15±15}{12} when ± is plus. Add -15 to 15.
x=0
Divide 0 by 12.
x=-\frac{30}{12}
Now solve the equation x=\frac{-15±15}{12} when ± is minus. Subtract 15 from -15.
x=-\frac{5}{2}
Reduce the fraction \frac{-30}{12} to lowest terms by extracting and canceling out 6.
6x^{2}+15x=6x\left(x-\left(-\frac{5}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{5}{2} for x_{2}.
6x^{2}+15x=6x\left(x+\frac{5}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
6x^{2}+15x=6x\times \frac{2x+5}{2}
Add \frac{5}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}+15x=3x\left(2x+5\right)
Cancel out 2, the greatest common factor in 6 and 2.