Solve for x
x=\sqrt{55}+6\approx 13.416198487
x=6-\sqrt{55}\approx -1.416198487
Graph
Share
Copied to clipboard
6x^{2}+12x+14-7x^{2}=-5
Subtract 7x^{2} from both sides.
-x^{2}+12x+14=-5
Combine 6x^{2} and -7x^{2} to get -x^{2}.
-x^{2}+12x+14+5=0
Add 5 to both sides.
-x^{2}+12x+19=0
Add 14 and 5 to get 19.
x=\frac{-12±\sqrt{12^{2}-4\left(-1\right)\times 19}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 12 for b, and 19 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-1\right)\times 19}}{2\left(-1\right)}
Square 12.
x=\frac{-12±\sqrt{144+4\times 19}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-12±\sqrt{144+76}}{2\left(-1\right)}
Multiply 4 times 19.
x=\frac{-12±\sqrt{220}}{2\left(-1\right)}
Add 144 to 76.
x=\frac{-12±2\sqrt{55}}{2\left(-1\right)}
Take the square root of 220.
x=\frac{-12±2\sqrt{55}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{55}-12}{-2}
Now solve the equation x=\frac{-12±2\sqrt{55}}{-2} when ± is plus. Add -12 to 2\sqrt{55}.
x=6-\sqrt{55}
Divide -12+2\sqrt{55} by -2.
x=\frac{-2\sqrt{55}-12}{-2}
Now solve the equation x=\frac{-12±2\sqrt{55}}{-2} when ± is minus. Subtract 2\sqrt{55} from -12.
x=\sqrt{55}+6
Divide -12-2\sqrt{55} by -2.
x=6-\sqrt{55} x=\sqrt{55}+6
The equation is now solved.
6x^{2}+12x+14-7x^{2}=-5
Subtract 7x^{2} from both sides.
-x^{2}+12x+14=-5
Combine 6x^{2} and -7x^{2} to get -x^{2}.
-x^{2}+12x=-5-14
Subtract 14 from both sides.
-x^{2}+12x=-19
Subtract 14 from -5 to get -19.
\frac{-x^{2}+12x}{-1}=-\frac{19}{-1}
Divide both sides by -1.
x^{2}+\frac{12}{-1}x=-\frac{19}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-12x=-\frac{19}{-1}
Divide 12 by -1.
x^{2}-12x=19
Divide -19 by -1.
x^{2}-12x+\left(-6\right)^{2}=19+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=19+36
Square -6.
x^{2}-12x+36=55
Add 19 to 36.
\left(x-6\right)^{2}=55
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{55}
Take the square root of both sides of the equation.
x-6=\sqrt{55} x-6=-\sqrt{55}
Simplify.
x=\sqrt{55}+6 x=6-\sqrt{55}
Add 6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}