Solve for a (complex solution)
\left\{\begin{matrix}\\a=3x-b\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&x=-\frac{b}{2}\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=3x-b\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&x=-\frac{b}{2}\end{matrix}\right.
Solve for b
b=3x-a
b=-2x
Graph
Share
Copied to clipboard
6x^{2}+bx-2ax=b^{2}+ab
Use the distributive property to multiply b-2a by x.
6x^{2}+bx-2ax-ab=b^{2}
Subtract ab from both sides.
bx-2ax-ab=b^{2}-6x^{2}
Subtract 6x^{2} from both sides.
-2ax-ab=b^{2}-6x^{2}-bx
Subtract bx from both sides.
\left(-2x-b\right)a=b^{2}-6x^{2}-bx
Combine all terms containing a.
\left(-2x-b\right)a=b^{2}-bx-6x^{2}
The equation is in standard form.
\frac{\left(-2x-b\right)a}{-2x-b}=\frac{\left(b-3x\right)\left(2x+b\right)}{-2x-b}
Divide both sides by -2x-b.
a=\frac{\left(b-3x\right)\left(2x+b\right)}{-2x-b}
Dividing by -2x-b undoes the multiplication by -2x-b.
a=3x-b
Divide \left(-3x+b\right)\left(2x+b\right) by -2x-b.
6x^{2}+bx-2ax=b^{2}+ab
Use the distributive property to multiply b-2a by x.
6x^{2}+bx-2ax-ab=b^{2}
Subtract ab from both sides.
bx-2ax-ab=b^{2}-6x^{2}
Subtract 6x^{2} from both sides.
-2ax-ab=b^{2}-6x^{2}-bx
Subtract bx from both sides.
\left(-2x-b\right)a=b^{2}-6x^{2}-bx
Combine all terms containing a.
\left(-2x-b\right)a=b^{2}-bx-6x^{2}
The equation is in standard form.
\frac{\left(-2x-b\right)a}{-2x-b}=\frac{\left(b-3x\right)\left(2x+b\right)}{-2x-b}
Divide both sides by -2x-b.
a=\frac{\left(b-3x\right)\left(2x+b\right)}{-2x-b}
Dividing by -2x-b undoes the multiplication by -2x-b.
a=3x-b
Divide \left(-3x+b\right)\left(2x+b\right) by -2x-b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}