Solve for x
x=-\frac{1}{28}\approx -0.035714286
x=0
Graph
Share
Copied to clipboard
x\left(6+2\times 84x\right)=0
Factor out x.
x=0 x=-\frac{1}{28}
To find equation solutions, solve x=0 and 6+168x=0.
6x+168x^{2}=0
Multiply 84 and 2 to get 168.
168x^{2}+6x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}}}{2\times 168}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 168 for a, 6 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±6}{2\times 168}
Take the square root of 6^{2}.
x=\frac{-6±6}{336}
Multiply 2 times 168.
x=\frac{0}{336}
Now solve the equation x=\frac{-6±6}{336} when ± is plus. Add -6 to 6.
x=0
Divide 0 by 336.
x=-\frac{12}{336}
Now solve the equation x=\frac{-6±6}{336} when ± is minus. Subtract 6 from -6.
x=-\frac{1}{28}
Reduce the fraction \frac{-12}{336} to lowest terms by extracting and canceling out 12.
x=0 x=-\frac{1}{28}
The equation is now solved.
6x+168x^{2}=0
Multiply 84 and 2 to get 168.
168x^{2}+6x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{168x^{2}+6x}{168}=\frac{0}{168}
Divide both sides by 168.
x^{2}+\frac{6}{168}x=\frac{0}{168}
Dividing by 168 undoes the multiplication by 168.
x^{2}+\frac{1}{28}x=\frac{0}{168}
Reduce the fraction \frac{6}{168} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{1}{28}x=0
Divide 0 by 168.
x^{2}+\frac{1}{28}x+\left(\frac{1}{56}\right)^{2}=\left(\frac{1}{56}\right)^{2}
Divide \frac{1}{28}, the coefficient of the x term, by 2 to get \frac{1}{56}. Then add the square of \frac{1}{56} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{28}x+\frac{1}{3136}=\frac{1}{3136}
Square \frac{1}{56} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{1}{56}\right)^{2}=\frac{1}{3136}
Factor x^{2}+\frac{1}{28}x+\frac{1}{3136}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{56}\right)^{2}}=\sqrt{\frac{1}{3136}}
Take the square root of both sides of the equation.
x+\frac{1}{56}=\frac{1}{56} x+\frac{1}{56}=-\frac{1}{56}
Simplify.
x=0 x=-\frac{1}{28}
Subtract \frac{1}{56} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}