Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(3x+x^{2}-10\right)
Factor out 2.
x^{2}+3x-10
Consider 3x+x^{2}-10. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=3 ab=1\left(-10\right)=-10
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
-1,10 -2,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -10.
-1+10=9 -2+5=3
Calculate the sum for each pair.
a=-2 b=5
The solution is the pair that gives sum 3.
\left(x^{2}-2x\right)+\left(5x-10\right)
Rewrite x^{2}+3x-10 as \left(x^{2}-2x\right)+\left(5x-10\right).
x\left(x-2\right)+5\left(x-2\right)
Factor out x in the first and 5 in the second group.
\left(x-2\right)\left(x+5\right)
Factor out common term x-2 by using distributive property.
2\left(x-2\right)\left(x+5\right)
Rewrite the complete factored expression.
2x^{2}+6x-20=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 2\left(-20\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{36-4\times 2\left(-20\right)}}{2\times 2}
Square 6.
x=\frac{-6±\sqrt{36-8\left(-20\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-6±\sqrt{36+160}}{2\times 2}
Multiply -8 times -20.
x=\frac{-6±\sqrt{196}}{2\times 2}
Add 36 to 160.
x=\frac{-6±14}{2\times 2}
Take the square root of 196.
x=\frac{-6±14}{4}
Multiply 2 times 2.
x=\frac{8}{4}
Now solve the equation x=\frac{-6±14}{4} when ± is plus. Add -6 to 14.
x=2
Divide 8 by 4.
x=-\frac{20}{4}
Now solve the equation x=\frac{-6±14}{4} when ± is minus. Subtract 14 from -6.
x=-5
Divide -20 by 4.
2x^{2}+6x-20=2\left(x-2\right)\left(x-\left(-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and -5 for x_{2}.
2x^{2}+6x-20=2\left(x-2\right)\left(x+5\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.