Differentiate w.r.t. u
-2\sqrt{v}u-15\sqrt{\frac{v}{u}}+6
Evaluate
-\sqrt{v}u^{2}-30\sqrt{uv}+6u+5
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}u}(6u-30u^{\frac{1}{2}}v^{\frac{1}{2}}-u^{2}v^{\frac{1}{2}}+5)
Multiply -1 and 30 to get -30.
6u^{1-1}+\frac{1}{2}\left(-30\sqrt{v}\right)u^{\frac{1}{2}-1}+2\left(-\sqrt{v}\right)u^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
6u^{0}+\frac{1}{2}\left(-30\sqrt{v}\right)u^{\frac{1}{2}-1}+2\left(-\sqrt{v}\right)u^{2-1}
Subtract 1 from 1.
6u^{0}+\left(-15\sqrt{v}\right)u^{\frac{1}{2}-1}+2\left(-\sqrt{v}\right)u^{2-1}
Multiply \frac{1}{2} times -30v^{\frac{1}{2}}.
6u^{0}+\left(-15\sqrt{v}\right)u^{-\frac{1}{2}}+2\left(-\sqrt{v}\right)u^{2-1}
Subtract 1 from \frac{1}{2}.
6u^{0}+\left(-15\sqrt{v}\right)u^{-\frac{1}{2}}+\left(-2\sqrt{v}\right)u^{2-1}
Multiply \frac{1}{2} times -30v^{\frac{1}{2}}.
6u^{0}+\left(-15\sqrt{v}\right)u^{-\frac{1}{2}}+\left(-2\sqrt{v}\right)u^{1}
Subtract 1 from 2.
6u^{0}+\left(-15\sqrt{v}\right)u^{-\frac{1}{2}}+\left(-2\sqrt{v}\right)u
For any term t, t^{1}=t.
6\times 1+\left(-15\sqrt{v}\right)u^{-\frac{1}{2}}+\left(-2\sqrt{v}\right)u
For any term t except 0, t^{0}=1.
6+\left(-15\sqrt{v}\right)u^{-\frac{1}{2}}+\left(-2\sqrt{v}\right)u
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}