Skip to main content
Differentiate w.r.t. u
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}u}(6u-30u^{\frac{1}{2}}v^{\frac{1}{2}}-u^{2}v^{\frac{1}{2}}+5)
Multiply -1 and 30 to get -30.
6u^{1-1}+\frac{1}{2}\left(-30\sqrt{v}\right)u^{\frac{1}{2}-1}+2\left(-\sqrt{v}\right)u^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
6u^{0}+\frac{1}{2}\left(-30\sqrt{v}\right)u^{\frac{1}{2}-1}+2\left(-\sqrt{v}\right)u^{2-1}
Subtract 1 from 1.
6u^{0}+\left(-15\sqrt{v}\right)u^{\frac{1}{2}-1}+2\left(-\sqrt{v}\right)u^{2-1}
Multiply \frac{1}{2} times -30v^{\frac{1}{2}}.
6u^{0}+\left(-15\sqrt{v}\right)u^{-\frac{1}{2}}+2\left(-\sqrt{v}\right)u^{2-1}
Subtract 1 from \frac{1}{2}.
6u^{0}+\left(-15\sqrt{v}\right)u^{-\frac{1}{2}}+\left(-2\sqrt{v}\right)u^{2-1}
Multiply \frac{1}{2} times -30v^{\frac{1}{2}}.
6u^{0}+\left(-15\sqrt{v}\right)u^{-\frac{1}{2}}+\left(-2\sqrt{v}\right)u^{1}
Subtract 1 from 2.
6u^{0}+\left(-15\sqrt{v}\right)u^{-\frac{1}{2}}+\left(-2\sqrt{v}\right)u
For any term t, t^{1}=t.
6\times 1+\left(-15\sqrt{v}\right)u^{-\frac{1}{2}}+\left(-2\sqrt{v}\right)u
For any term t except 0, t^{0}=1.
6+\left(-15\sqrt{v}\right)u^{-\frac{1}{2}}+\left(-2\sqrt{v}\right)u
For any term t, t\times 1=t and 1t=t.