Skip to main content
Solve for u
Tick mark Image

Similar Problems from Web Search

Share

u^{2}+14u+13=0
Divide both sides by 6.
a+b=14 ab=1\times 13=13
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as u^{2}+au+bu+13. To find a and b, set up a system to be solved.
a=1 b=13
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(u^{2}+u\right)+\left(13u+13\right)
Rewrite u^{2}+14u+13 as \left(u^{2}+u\right)+\left(13u+13\right).
u\left(u+1\right)+13\left(u+1\right)
Factor out u in the first and 13 in the second group.
\left(u+1\right)\left(u+13\right)
Factor out common term u+1 by using distributive property.
u=-1 u=-13
To find equation solutions, solve u+1=0 and u+13=0.
6u^{2}+84u+78=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
u=\frac{-84±\sqrt{84^{2}-4\times 6\times 78}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 84 for b, and 78 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-84±\sqrt{7056-4\times 6\times 78}}{2\times 6}
Square 84.
u=\frac{-84±\sqrt{7056-24\times 78}}{2\times 6}
Multiply -4 times 6.
u=\frac{-84±\sqrt{7056-1872}}{2\times 6}
Multiply -24 times 78.
u=\frac{-84±\sqrt{5184}}{2\times 6}
Add 7056 to -1872.
u=\frac{-84±72}{2\times 6}
Take the square root of 5184.
u=\frac{-84±72}{12}
Multiply 2 times 6.
u=-\frac{12}{12}
Now solve the equation u=\frac{-84±72}{12} when ± is plus. Add -84 to 72.
u=-1
Divide -12 by 12.
u=-\frac{156}{12}
Now solve the equation u=\frac{-84±72}{12} when ± is minus. Subtract 72 from -84.
u=-13
Divide -156 by 12.
u=-1 u=-13
The equation is now solved.
6u^{2}+84u+78=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6u^{2}+84u+78-78=-78
Subtract 78 from both sides of the equation.
6u^{2}+84u=-78
Subtracting 78 from itself leaves 0.
\frac{6u^{2}+84u}{6}=-\frac{78}{6}
Divide both sides by 6.
u^{2}+\frac{84}{6}u=-\frac{78}{6}
Dividing by 6 undoes the multiplication by 6.
u^{2}+14u=-\frac{78}{6}
Divide 84 by 6.
u^{2}+14u=-13
Divide -78 by 6.
u^{2}+14u+7^{2}=-13+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
u^{2}+14u+49=-13+49
Square 7.
u^{2}+14u+49=36
Add -13 to 49.
\left(u+7\right)^{2}=36
Factor u^{2}+14u+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u+7\right)^{2}}=\sqrt{36}
Take the square root of both sides of the equation.
u+7=6 u+7=-6
Simplify.
u=-1 u=-13
Subtract 7 from both sides of the equation.
x ^ 2 +14x +13 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 6
r + s = -14 rs = 13
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -7 - u s = -7 + u
Two numbers r and s sum up to -14 exactly when the average of the two numbers is \frac{1}{2}*-14 = -7. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-7 - u) (-7 + u) = 13
To solve for unknown quantity u, substitute these in the product equation rs = 13
49 - u^2 = 13
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 13-49 = -36
Simplify the expression by subtracting 49 on both sides
u^2 = 36 u = \pm\sqrt{36} = \pm 6
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-7 - 6 = -13 s = -7 + 6 = -1
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.