Solve for u
u=\frac{1}{24}\approx 0.041666667
Share
Copied to clipboard
2\times 6u^{-1}-13u^{-1}+24=0
Multiply both sides of the equation by 4, the least common multiple of 2,4.
12u^{-1}-13u^{-1}+24=0
Multiply 2 and 6 to get 12.
-u^{-1}+24=0
Combine 12u^{-1} and -13u^{-1} to get -u^{-1}.
-u^{-1}=-24
Subtract 24 from both sides. Anything subtracted from zero gives its negation.
u^{-1}=\frac{-24}{-1}
Divide both sides by -1.
u^{-1}=24
Fraction \frac{-24}{-1} can be simplified to 24 by removing the negative sign from both the numerator and the denominator.
\frac{1}{u}=24
Reorder the terms.
1=24u
Variable u cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by u.
24u=1
Swap sides so that all variable terms are on the left hand side.
u=\frac{1}{24}
Divide both sides by 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}