Solve for t
t=-\sqrt{15}i+3\approx 3-3.872983346i
t=3+\sqrt{15}i\approx 3+3.872983346i
Share
Copied to clipboard
-t^{2}+6t=24
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-t^{2}+6t-24=24-24
Subtract 24 from both sides of the equation.
-t^{2}+6t-24=0
Subtracting 24 from itself leaves 0.
t=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\left(-24\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 6 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-6±\sqrt{36-4\left(-1\right)\left(-24\right)}}{2\left(-1\right)}
Square 6.
t=\frac{-6±\sqrt{36+4\left(-24\right)}}{2\left(-1\right)}
Multiply -4 times -1.
t=\frac{-6±\sqrt{36-96}}{2\left(-1\right)}
Multiply 4 times -24.
t=\frac{-6±\sqrt{-60}}{2\left(-1\right)}
Add 36 to -96.
t=\frac{-6±2\sqrt{15}i}{2\left(-1\right)}
Take the square root of -60.
t=\frac{-6±2\sqrt{15}i}{-2}
Multiply 2 times -1.
t=\frac{-6+2\sqrt{15}i}{-2}
Now solve the equation t=\frac{-6±2\sqrt{15}i}{-2} when ± is plus. Add -6 to 2i\sqrt{15}.
t=-\sqrt{15}i+3
Divide -6+2i\sqrt{15} by -2.
t=\frac{-2\sqrt{15}i-6}{-2}
Now solve the equation t=\frac{-6±2\sqrt{15}i}{-2} when ± is minus. Subtract 2i\sqrt{15} from -6.
t=3+\sqrt{15}i
Divide -6-2i\sqrt{15} by -2.
t=-\sqrt{15}i+3 t=3+\sqrt{15}i
The equation is now solved.
-t^{2}+6t=24
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-t^{2}+6t}{-1}=\frac{24}{-1}
Divide both sides by -1.
t^{2}+\frac{6}{-1}t=\frac{24}{-1}
Dividing by -1 undoes the multiplication by -1.
t^{2}-6t=\frac{24}{-1}
Divide 6 by -1.
t^{2}-6t=-24
Divide 24 by -1.
t^{2}-6t+\left(-3\right)^{2}=-24+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-6t+9=-24+9
Square -3.
t^{2}-6t+9=-15
Add -24 to 9.
\left(t-3\right)^{2}=-15
Factor t^{2}-6t+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-3\right)^{2}}=\sqrt{-15}
Take the square root of both sides of the equation.
t-3=\sqrt{15}i t-3=-\sqrt{15}i
Simplify.
t=3+\sqrt{15}i t=-\sqrt{15}i+3
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}