Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

6t^{2}-44t+36=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-\left(-44\right)±\sqrt{\left(-44\right)^{2}-4\times 6\times 36}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 6 for a, -44 for b, and 36 for c in the quadratic formula.
t=\frac{44±4\sqrt{67}}{12}
Do the calculations.
t=\frac{\sqrt{67}+11}{3} t=\frac{11-\sqrt{67}}{3}
Solve the equation t=\frac{44±4\sqrt{67}}{12} when ± is plus and when ± is minus.
6\left(t-\frac{\sqrt{67}+11}{3}\right)\left(t-\frac{11-\sqrt{67}}{3}\right)>0
Rewrite the inequality by using the obtained solutions.
t-\frac{\sqrt{67}+11}{3}<0 t-\frac{11-\sqrt{67}}{3}<0
For the product to be positive, t-\frac{\sqrt{67}+11}{3} and t-\frac{11-\sqrt{67}}{3} have to be both negative or both positive. Consider the case when t-\frac{\sqrt{67}+11}{3} and t-\frac{11-\sqrt{67}}{3} are both negative.
t<\frac{11-\sqrt{67}}{3}
The solution satisfying both inequalities is t<\frac{11-\sqrt{67}}{3}.
t-\frac{11-\sqrt{67}}{3}>0 t-\frac{\sqrt{67}+11}{3}>0
Consider the case when t-\frac{\sqrt{67}+11}{3} and t-\frac{11-\sqrt{67}}{3} are both positive.
t>\frac{\sqrt{67}+11}{3}
The solution satisfying both inequalities is t>\frac{\sqrt{67}+11}{3}.
t<\frac{11-\sqrt{67}}{3}\text{; }t>\frac{\sqrt{67}+11}{3}
The final solution is the union of the obtained solutions.