Skip to main content
Solve for s
Tick mark Image

Similar Problems from Web Search

Share

6s^{2}-5-19=0
Subtract 19 from both sides.
6s^{2}-24=0
Subtract 19 from -5 to get -24.
s^{2}-4=0
Divide both sides by 6.
\left(s-2\right)\left(s+2\right)=0
Consider s^{2}-4. Rewrite s^{2}-4 as s^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
s=2 s=-2
To find equation solutions, solve s-2=0 and s+2=0.
6s^{2}=19+5
Add 5 to both sides.
6s^{2}=24
Add 19 and 5 to get 24.
s^{2}=\frac{24}{6}
Divide both sides by 6.
s^{2}=4
Divide 24 by 6 to get 4.
s=2 s=-2
Take the square root of both sides of the equation.
6s^{2}-5-19=0
Subtract 19 from both sides.
6s^{2}-24=0
Subtract 19 from -5 to get -24.
s=\frac{0±\sqrt{0^{2}-4\times 6\left(-24\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 0 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{0±\sqrt{-4\times 6\left(-24\right)}}{2\times 6}
Square 0.
s=\frac{0±\sqrt{-24\left(-24\right)}}{2\times 6}
Multiply -4 times 6.
s=\frac{0±\sqrt{576}}{2\times 6}
Multiply -24 times -24.
s=\frac{0±24}{2\times 6}
Take the square root of 576.
s=\frac{0±24}{12}
Multiply 2 times 6.
s=2
Now solve the equation s=\frac{0±24}{12} when ± is plus. Divide 24 by 12.
s=-2
Now solve the equation s=\frac{0±24}{12} when ± is minus. Divide -24 by 12.
s=2 s=-2
The equation is now solved.