Solve for r (complex solution)
r = \frac{450283905890997363}{2} = 2.251419529454987 \times 10^{17}
Solve for r
r = \frac{450283905890997363}{2} = 2.251419529454987 \times 10^{17}
a>0
Solve for a (complex solution)
a\in \mathrm{C}
r = \frac{450283905890997363}{2} = 2.251419529454987 \times 10^{17}
Solve for a
a>0
r=\frac{450283905890997363}{2}\text{ and }a>0
Share
Copied to clipboard
6r-1350851717672992089=0^{a}
Calculate 9 to the power of 19 and get 1350851717672992089.
6r=0^{a}+1350851717672992089
Add 1350851717672992089 to both sides.
6r=1350851717672992089
The equation is in standard form.
\frac{6r}{6}=\frac{1350851717672992089}{6}
Divide both sides by 6.
r=\frac{1350851717672992089}{6}
Dividing by 6 undoes the multiplication by 6.
r=\frac{450283905890997363}{2}
Reduce the fraction \frac{1350851717672992089}{6} to lowest terms by extracting and canceling out 3.
6r-1350851717672992089=0^{a}
Calculate 9 to the power of 19 and get 1350851717672992089.
6r=0^{a}+1350851717672992089
Add 1350851717672992089 to both sides.
6r=1350851717672992089
The equation is in standard form.
\frac{6r}{6}=\frac{1350851717672992089}{6}
Divide both sides by 6.
r=\frac{1350851717672992089}{6}
Dividing by 6 undoes the multiplication by 6.
r=\frac{450283905890997363}{2}
Reduce the fraction \frac{1350851717672992089}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}