Factor
\left(6r-7\right)\left(r+10\right)
Evaluate
\left(6r-7\right)\left(r+10\right)
Share
Copied to clipboard
a+b=53 ab=6\left(-70\right)=-420
Factor the expression by grouping. First, the expression needs to be rewritten as 6r^{2}+ar+br-70. To find a and b, set up a system to be solved.
-1,420 -2,210 -3,140 -4,105 -5,84 -6,70 -7,60 -10,42 -12,35 -14,30 -15,28 -20,21
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -420.
-1+420=419 -2+210=208 -3+140=137 -4+105=101 -5+84=79 -6+70=64 -7+60=53 -10+42=32 -12+35=23 -14+30=16 -15+28=13 -20+21=1
Calculate the sum for each pair.
a=-7 b=60
The solution is the pair that gives sum 53.
\left(6r^{2}-7r\right)+\left(60r-70\right)
Rewrite 6r^{2}+53r-70 as \left(6r^{2}-7r\right)+\left(60r-70\right).
r\left(6r-7\right)+10\left(6r-7\right)
Factor out r in the first and 10 in the second group.
\left(6r-7\right)\left(r+10\right)
Factor out common term 6r-7 by using distributive property.
6r^{2}+53r-70=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
r=\frac{-53±\sqrt{53^{2}-4\times 6\left(-70\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-53±\sqrt{2809-4\times 6\left(-70\right)}}{2\times 6}
Square 53.
r=\frac{-53±\sqrt{2809-24\left(-70\right)}}{2\times 6}
Multiply -4 times 6.
r=\frac{-53±\sqrt{2809+1680}}{2\times 6}
Multiply -24 times -70.
r=\frac{-53±\sqrt{4489}}{2\times 6}
Add 2809 to 1680.
r=\frac{-53±67}{2\times 6}
Take the square root of 4489.
r=\frac{-53±67}{12}
Multiply 2 times 6.
r=\frac{14}{12}
Now solve the equation r=\frac{-53±67}{12} when ± is plus. Add -53 to 67.
r=\frac{7}{6}
Reduce the fraction \frac{14}{12} to lowest terms by extracting and canceling out 2.
r=-\frac{120}{12}
Now solve the equation r=\frac{-53±67}{12} when ± is minus. Subtract 67 from -53.
r=-10
Divide -120 by 12.
6r^{2}+53r-70=6\left(r-\frac{7}{6}\right)\left(r-\left(-10\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7}{6} for x_{1} and -10 for x_{2}.
6r^{2}+53r-70=6\left(r-\frac{7}{6}\right)\left(r+10\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
6r^{2}+53r-70=6\times \frac{6r-7}{6}\left(r+10\right)
Subtract \frac{7}{6} from r by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
6r^{2}+53r-70=\left(6r-7\right)\left(r+10\right)
Cancel out 6, the greatest common factor in 6 and 6.
x ^ 2 +\frac{53}{6}x -\frac{35}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 6
r + s = -\frac{53}{6} rs = -\frac{35}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{53}{12} - u s = -\frac{53}{12} + u
Two numbers r and s sum up to -\frac{53}{6} exactly when the average of the two numbers is \frac{1}{2}*-\frac{53}{6} = -\frac{53}{12}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{53}{12} - u) (-\frac{53}{12} + u) = -\frac{35}{3}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{35}{3}
\frac{2809}{144} - u^2 = -\frac{35}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{35}{3}-\frac{2809}{144} = -\frac{4489}{144}
Simplify the expression by subtracting \frac{2809}{144} on both sides
u^2 = \frac{4489}{144} u = \pm\sqrt{\frac{4489}{144}} = \pm \frac{67}{12}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{53}{12} - \frac{67}{12} = -10 s = -\frac{53}{12} + \frac{67}{12} = 1.167
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}