Skip to main content
Solve for p
Tick mark Image

Similar Problems from Web Search

Share

6p^{2}=18
Add 18 to both sides. Anything plus zero gives itself.
p^{2}=\frac{18}{6}
Divide both sides by 6.
p^{2}=3
Divide 18 by 6 to get 3.
p=\sqrt{3} p=-\sqrt{3}
Take the square root of both sides of the equation.
6p^{2}-18=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
p=\frac{0±\sqrt{0^{2}-4\times 6\left(-18\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 0 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{0±\sqrt{-4\times 6\left(-18\right)}}{2\times 6}
Square 0.
p=\frac{0±\sqrt{-24\left(-18\right)}}{2\times 6}
Multiply -4 times 6.
p=\frac{0±\sqrt{432}}{2\times 6}
Multiply -24 times -18.
p=\frac{0±12\sqrt{3}}{2\times 6}
Take the square root of 432.
p=\frac{0±12\sqrt{3}}{12}
Multiply 2 times 6.
p=\sqrt{3}
Now solve the equation p=\frac{0±12\sqrt{3}}{12} when ± is plus.
p=-\sqrt{3}
Now solve the equation p=\frac{0±12\sqrt{3}}{12} when ± is minus.
p=\sqrt{3} p=-\sqrt{3}
The equation is now solved.