Factor
\left(2p+9\right)\left(3p+5\right)
Evaluate
\left(2p+9\right)\left(3p+5\right)
Share
Copied to clipboard
a+b=37 ab=6\times 45=270
Factor the expression by grouping. First, the expression needs to be rewritten as 6p^{2}+ap+bp+45. To find a and b, set up a system to be solved.
1,270 2,135 3,90 5,54 6,45 9,30 10,27 15,18
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 270.
1+270=271 2+135=137 3+90=93 5+54=59 6+45=51 9+30=39 10+27=37 15+18=33
Calculate the sum for each pair.
a=10 b=27
The solution is the pair that gives sum 37.
\left(6p^{2}+10p\right)+\left(27p+45\right)
Rewrite 6p^{2}+37p+45 as \left(6p^{2}+10p\right)+\left(27p+45\right).
2p\left(3p+5\right)+9\left(3p+5\right)
Factor out 2p in the first and 9 in the second group.
\left(3p+5\right)\left(2p+9\right)
Factor out common term 3p+5 by using distributive property.
6p^{2}+37p+45=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-37±\sqrt{37^{2}-4\times 6\times 45}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-37±\sqrt{1369-4\times 6\times 45}}{2\times 6}
Square 37.
p=\frac{-37±\sqrt{1369-24\times 45}}{2\times 6}
Multiply -4 times 6.
p=\frac{-37±\sqrt{1369-1080}}{2\times 6}
Multiply -24 times 45.
p=\frac{-37±\sqrt{289}}{2\times 6}
Add 1369 to -1080.
p=\frac{-37±17}{2\times 6}
Take the square root of 289.
p=\frac{-37±17}{12}
Multiply 2 times 6.
p=-\frac{20}{12}
Now solve the equation p=\frac{-37±17}{12} when ± is plus. Add -37 to 17.
p=-\frac{5}{3}
Reduce the fraction \frac{-20}{12} to lowest terms by extracting and canceling out 4.
p=-\frac{54}{12}
Now solve the equation p=\frac{-37±17}{12} when ± is minus. Subtract 17 from -37.
p=-\frac{9}{2}
Reduce the fraction \frac{-54}{12} to lowest terms by extracting and canceling out 6.
6p^{2}+37p+45=6\left(p-\left(-\frac{5}{3}\right)\right)\left(p-\left(-\frac{9}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{5}{3} for x_{1} and -\frac{9}{2} for x_{2}.
6p^{2}+37p+45=6\left(p+\frac{5}{3}\right)\left(p+\frac{9}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
6p^{2}+37p+45=6\times \frac{3p+5}{3}\left(p+\frac{9}{2}\right)
Add \frac{5}{3} to p by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
6p^{2}+37p+45=6\times \frac{3p+5}{3}\times \frac{2p+9}{2}
Add \frac{9}{2} to p by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
6p^{2}+37p+45=6\times \frac{\left(3p+5\right)\left(2p+9\right)}{3\times 2}
Multiply \frac{3p+5}{3} times \frac{2p+9}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
6p^{2}+37p+45=6\times \frac{\left(3p+5\right)\left(2p+9\right)}{6}
Multiply 3 times 2.
6p^{2}+37p+45=\left(3p+5\right)\left(2p+9\right)
Cancel out 6, the greatest common factor in 6 and 6.
x ^ 2 +\frac{37}{6}x +\frac{15}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 6
r + s = -\frac{37}{6} rs = \frac{15}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{37}{12} - u s = -\frac{37}{12} + u
Two numbers r and s sum up to -\frac{37}{6} exactly when the average of the two numbers is \frac{1}{2}*-\frac{37}{6} = -\frac{37}{12}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{37}{12} - u) (-\frac{37}{12} + u) = \frac{15}{2}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{15}{2}
\frac{1369}{144} - u^2 = \frac{15}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{15}{2}-\frac{1369}{144} = -\frac{289}{144}
Simplify the expression by subtracting \frac{1369}{144} on both sides
u^2 = \frac{289}{144} u = \pm\sqrt{\frac{289}{144}} = \pm \frac{17}{12}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{37}{12} - \frac{17}{12} = -4.500 s = -\frac{37}{12} + \frac{17}{12} = -1.667
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}