Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(6p^{2}+19p-10)
Combine 15p and 4p to get 19p.
6p^{2}+19p-10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-19±\sqrt{19^{2}-4\times 6\left(-10\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-19±\sqrt{361-4\times 6\left(-10\right)}}{2\times 6}
Square 19.
p=\frac{-19±\sqrt{361-24\left(-10\right)}}{2\times 6}
Multiply -4 times 6.
p=\frac{-19±\sqrt{361+240}}{2\times 6}
Multiply -24 times -10.
p=\frac{-19±\sqrt{601}}{2\times 6}
Add 361 to 240.
p=\frac{-19±\sqrt{601}}{12}
Multiply 2 times 6.
p=\frac{\sqrt{601}-19}{12}
Now solve the equation p=\frac{-19±\sqrt{601}}{12} when ± is plus. Add -19 to \sqrt{601}.
p=\frac{-\sqrt{601}-19}{12}
Now solve the equation p=\frac{-19±\sqrt{601}}{12} when ± is minus. Subtract \sqrt{601} from -19.
6p^{2}+19p-10=6\left(p-\frac{\sqrt{601}-19}{12}\right)\left(p-\frac{-\sqrt{601}-19}{12}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-19+\sqrt{601}}{12} for x_{1} and \frac{-19-\sqrt{601}}{12} for x_{2}.
6p^{2}+19p-10
Combine 15p and 4p to get 19p.