Factor
\left(2n-9\right)\left(3n+5\right)
Evaluate
\left(2n-9\right)\left(3n+5\right)
Share
Copied to clipboard
a+b=-17 ab=6\left(-45\right)=-270
Factor the expression by grouping. First, the expression needs to be rewritten as 6n^{2}+an+bn-45. To find a and b, set up a system to be solved.
1,-270 2,-135 3,-90 5,-54 6,-45 9,-30 10,-27 15,-18
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -270.
1-270=-269 2-135=-133 3-90=-87 5-54=-49 6-45=-39 9-30=-21 10-27=-17 15-18=-3
Calculate the sum for each pair.
a=-27 b=10
The solution is the pair that gives sum -17.
\left(6n^{2}-27n\right)+\left(10n-45\right)
Rewrite 6n^{2}-17n-45 as \left(6n^{2}-27n\right)+\left(10n-45\right).
3n\left(2n-9\right)+5\left(2n-9\right)
Factor out 3n in the first and 5 in the second group.
\left(2n-9\right)\left(3n+5\right)
Factor out common term 2n-9 by using distributive property.
6n^{2}-17n-45=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 6\left(-45\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-17\right)±\sqrt{289-4\times 6\left(-45\right)}}{2\times 6}
Square -17.
n=\frac{-\left(-17\right)±\sqrt{289-24\left(-45\right)}}{2\times 6}
Multiply -4 times 6.
n=\frac{-\left(-17\right)±\sqrt{289+1080}}{2\times 6}
Multiply -24 times -45.
n=\frac{-\left(-17\right)±\sqrt{1369}}{2\times 6}
Add 289 to 1080.
n=\frac{-\left(-17\right)±37}{2\times 6}
Take the square root of 1369.
n=\frac{17±37}{2\times 6}
The opposite of -17 is 17.
n=\frac{17±37}{12}
Multiply 2 times 6.
n=\frac{54}{12}
Now solve the equation n=\frac{17±37}{12} when ± is plus. Add 17 to 37.
n=\frac{9}{2}
Reduce the fraction \frac{54}{12} to lowest terms by extracting and canceling out 6.
n=-\frac{20}{12}
Now solve the equation n=\frac{17±37}{12} when ± is minus. Subtract 37 from 17.
n=-\frac{5}{3}
Reduce the fraction \frac{-20}{12} to lowest terms by extracting and canceling out 4.
6n^{2}-17n-45=6\left(n-\frac{9}{2}\right)\left(n-\left(-\frac{5}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{9}{2} for x_{1} and -\frac{5}{3} for x_{2}.
6n^{2}-17n-45=6\left(n-\frac{9}{2}\right)\left(n+\frac{5}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
6n^{2}-17n-45=6\times \frac{2n-9}{2}\left(n+\frac{5}{3}\right)
Subtract \frac{9}{2} from n by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
6n^{2}-17n-45=6\times \frac{2n-9}{2}\times \frac{3n+5}{3}
Add \frac{5}{3} to n by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
6n^{2}-17n-45=6\times \frac{\left(2n-9\right)\left(3n+5\right)}{2\times 3}
Multiply \frac{2n-9}{2} times \frac{3n+5}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
6n^{2}-17n-45=6\times \frac{\left(2n-9\right)\left(3n+5\right)}{6}
Multiply 2 times 3.
6n^{2}-17n-45=\left(2n-9\right)\left(3n+5\right)
Cancel out 6, the greatest common factor in 6 and 6.
x ^ 2 -\frac{17}{6}x -\frac{15}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 6
r + s = \frac{17}{6} rs = -\frac{15}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{17}{12} - u s = \frac{17}{12} + u
Two numbers r and s sum up to \frac{17}{6} exactly when the average of the two numbers is \frac{1}{2}*\frac{17}{6} = \frac{17}{12}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{17}{12} - u) (\frac{17}{12} + u) = -\frac{15}{2}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{15}{2}
\frac{289}{144} - u^2 = -\frac{15}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{15}{2}-\frac{289}{144} = -\frac{1369}{144}
Simplify the expression by subtracting \frac{289}{144} on both sides
u^2 = \frac{1369}{144} u = \pm\sqrt{\frac{1369}{144}} = \pm \frac{37}{12}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{17}{12} - \frac{37}{12} = -1.667 s = \frac{17}{12} + \frac{37}{12} = 4.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}