Evaluate
\left(5m-4\right)\left(m+1\right)
Factor
\left(5m-4\right)\left(m+1\right)
Share
Copied to clipboard
5m^{2}-3m+2-\left(-4m\right)-6
Combine 6m^{2} and -m^{2} to get 5m^{2}.
5m^{2}-3m+2+4m-6
The opposite of -4m is 4m.
5m^{2}+m+2-6
Combine -3m and 4m to get m.
5m^{2}+m-4
Subtract 6 from 2 to get -4.
5m^{2}+m-4
Multiply and combine like terms.
a+b=1 ab=5\left(-4\right)=-20
Factor the expression by grouping. First, the expression needs to be rewritten as 5m^{2}+am+bm-4. To find a and b, set up a system to be solved.
-1,20 -2,10 -4,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -20.
-1+20=19 -2+10=8 -4+5=1
Calculate the sum for each pair.
a=-4 b=5
The solution is the pair that gives sum 1.
\left(5m^{2}-4m\right)+\left(5m-4\right)
Rewrite 5m^{2}+m-4 as \left(5m^{2}-4m\right)+\left(5m-4\right).
m\left(5m-4\right)+5m-4
Factor out m in 5m^{2}-4m.
\left(5m-4\right)\left(m+1\right)
Factor out common term 5m-4 by using distributive property.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}