Factor
6\left(k+3\right)\left(k+8\right)k^{2}
Evaluate
6\left(k+3\right)\left(k+8\right)k^{2}
Share
Copied to clipboard
6\left(k^{4}+11k^{3}+24k^{2}\right)
Factor out 6.
k^{2}\left(k^{2}+11k+24\right)
Consider k^{4}+11k^{3}+24k^{2}. Factor out k^{2}.
a+b=11 ab=1\times 24=24
Consider k^{2}+11k+24. Factor the expression by grouping. First, the expression needs to be rewritten as k^{2}+ak+bk+24. To find a and b, set up a system to be solved.
1,24 2,12 3,8 4,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 24.
1+24=25 2+12=14 3+8=11 4+6=10
Calculate the sum for each pair.
a=3 b=8
The solution is the pair that gives sum 11.
\left(k^{2}+3k\right)+\left(8k+24\right)
Rewrite k^{2}+11k+24 as \left(k^{2}+3k\right)+\left(8k+24\right).
k\left(k+3\right)+8\left(k+3\right)
Factor out k in the first and 8 in the second group.
\left(k+3\right)\left(k+8\right)
Factor out common term k+3 by using distributive property.
6k^{2}\left(k+3\right)\left(k+8\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}