Solve for k
k=3
k=4
Share
Copied to clipboard
k^{2}-7k+12=0
Divide both sides by 6.
a+b=-7 ab=1\times 12=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as k^{2}+ak+bk+12. To find a and b, set up a system to be solved.
-1,-12 -2,-6 -3,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 12.
-1-12=-13 -2-6=-8 -3-4=-7
Calculate the sum for each pair.
a=-4 b=-3
The solution is the pair that gives sum -7.
\left(k^{2}-4k\right)+\left(-3k+12\right)
Rewrite k^{2}-7k+12 as \left(k^{2}-4k\right)+\left(-3k+12\right).
k\left(k-4\right)-3\left(k-4\right)
Factor out k in the first and -3 in the second group.
\left(k-4\right)\left(k-3\right)
Factor out common term k-4 by using distributive property.
k=4 k=3
To find equation solutions, solve k-4=0 and k-3=0.
6k^{2}-42k+72=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}-4\times 6\times 72}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -42 for b, and 72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-42\right)±\sqrt{1764-4\times 6\times 72}}{2\times 6}
Square -42.
k=\frac{-\left(-42\right)±\sqrt{1764-24\times 72}}{2\times 6}
Multiply -4 times 6.
k=\frac{-\left(-42\right)±\sqrt{1764-1728}}{2\times 6}
Multiply -24 times 72.
k=\frac{-\left(-42\right)±\sqrt{36}}{2\times 6}
Add 1764 to -1728.
k=\frac{-\left(-42\right)±6}{2\times 6}
Take the square root of 36.
k=\frac{42±6}{2\times 6}
The opposite of -42 is 42.
k=\frac{42±6}{12}
Multiply 2 times 6.
k=\frac{48}{12}
Now solve the equation k=\frac{42±6}{12} when ± is plus. Add 42 to 6.
k=4
Divide 48 by 12.
k=\frac{36}{12}
Now solve the equation k=\frac{42±6}{12} when ± is minus. Subtract 6 from 42.
k=3
Divide 36 by 12.
k=4 k=3
The equation is now solved.
6k^{2}-42k+72=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6k^{2}-42k+72-72=-72
Subtract 72 from both sides of the equation.
6k^{2}-42k=-72
Subtracting 72 from itself leaves 0.
\frac{6k^{2}-42k}{6}=-\frac{72}{6}
Divide both sides by 6.
k^{2}+\left(-\frac{42}{6}\right)k=-\frac{72}{6}
Dividing by 6 undoes the multiplication by 6.
k^{2}-7k=-\frac{72}{6}
Divide -42 by 6.
k^{2}-7k=-12
Divide -72 by 6.
k^{2}-7k+\left(-\frac{7}{2}\right)^{2}=-12+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-7k+\frac{49}{4}=-12+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
k^{2}-7k+\frac{49}{4}=\frac{1}{4}
Add -12 to \frac{49}{4}.
\left(k-\frac{7}{2}\right)^{2}=\frac{1}{4}
Factor k^{2}-7k+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
k-\frac{7}{2}=\frac{1}{2} k-\frac{7}{2}=-\frac{1}{2}
Simplify.
k=4 k=3
Add \frac{7}{2} to both sides of the equation.
x ^ 2 -7x +12 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 6
r + s = 7 rs = 12
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{7}{2} - u s = \frac{7}{2} + u
Two numbers r and s sum up to 7 exactly when the average of the two numbers is \frac{1}{2}*7 = \frac{7}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{7}{2} - u) (\frac{7}{2} + u) = 12
To solve for unknown quantity u, substitute these in the product equation rs = 12
\frac{49}{4} - u^2 = 12
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 12-\frac{49}{4} = -\frac{1}{4}
Simplify the expression by subtracting \frac{49}{4} on both sides
u^2 = \frac{1}{4} u = \pm\sqrt{\frac{1}{4}} = \pm \frac{1}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{7}{2} - \frac{1}{2} = 3 s = \frac{7}{2} + \frac{1}{2} = 4
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}