Solve for c
c=\frac{1}{6}+\frac{152}{y}
y\neq 0
Solve for y
y=\frac{912}{6c-1}
c\neq \frac{1}{6}
Graph
Share
Copied to clipboard
6cy-900-\left(y-3\right)-15=0
Calculate 30 to the power of 2 and get 900.
6cy-900-y+3-15=0
To find the opposite of y-3, find the opposite of each term.
6cy-897-y-15=0
Add -900 and 3 to get -897.
6cy-912-y=0
Subtract 15 from -897 to get -912.
6cy-y=912
Add 912 to both sides. Anything plus zero gives itself.
6cy=912+y
Add y to both sides.
6yc=y+912
The equation is in standard form.
\frac{6yc}{6y}=\frac{y+912}{6y}
Divide both sides by 6y.
c=\frac{y+912}{6y}
Dividing by 6y undoes the multiplication by 6y.
c=\frac{1}{6}+\frac{152}{y}
Divide y+912 by 6y.
6cy-900-\left(y-3\right)-15=0
Calculate 30 to the power of 2 and get 900.
6cy-900-y+3-15=0
To find the opposite of y-3, find the opposite of each term.
6cy-897-y-15=0
Add -900 and 3 to get -897.
6cy-912-y=0
Subtract 15 from -897 to get -912.
6cy-y=912
Add 912 to both sides. Anything plus zero gives itself.
\left(6c-1\right)y=912
Combine all terms containing y.
\frac{\left(6c-1\right)y}{6c-1}=\frac{912}{6c-1}
Divide both sides by 6c-1.
y=\frac{912}{6c-1}
Dividing by 6c-1 undoes the multiplication by 6c-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}