Solve for b
b=-\frac{1}{2}=-0.5
b = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Share
Copied to clipboard
6b^{2}-5b-4=0
Subtract 4 from both sides.
a+b=-5 ab=6\left(-4\right)=-24
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 6b^{2}+ab+bb-4. To find a and b, set up a system to be solved.
1,-24 2,-12 3,-8 4,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -24.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
Calculate the sum for each pair.
a=-8 b=3
The solution is the pair that gives sum -5.
\left(6b^{2}-8b\right)+\left(3b-4\right)
Rewrite 6b^{2}-5b-4 as \left(6b^{2}-8b\right)+\left(3b-4\right).
2b\left(3b-4\right)+3b-4
Factor out 2b in 6b^{2}-8b.
\left(3b-4\right)\left(2b+1\right)
Factor out common term 3b-4 by using distributive property.
b=\frac{4}{3} b=-\frac{1}{2}
To find equation solutions, solve 3b-4=0 and 2b+1=0.
6b^{2}-5b=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
6b^{2}-5b-4=4-4
Subtract 4 from both sides of the equation.
6b^{2}-5b-4=0
Subtracting 4 from itself leaves 0.
b=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6\left(-4\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -5 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-5\right)±\sqrt{25-4\times 6\left(-4\right)}}{2\times 6}
Square -5.
b=\frac{-\left(-5\right)±\sqrt{25-24\left(-4\right)}}{2\times 6}
Multiply -4 times 6.
b=\frac{-\left(-5\right)±\sqrt{25+96}}{2\times 6}
Multiply -24 times -4.
b=\frac{-\left(-5\right)±\sqrt{121}}{2\times 6}
Add 25 to 96.
b=\frac{-\left(-5\right)±11}{2\times 6}
Take the square root of 121.
b=\frac{5±11}{2\times 6}
The opposite of -5 is 5.
b=\frac{5±11}{12}
Multiply 2 times 6.
b=\frac{16}{12}
Now solve the equation b=\frac{5±11}{12} when ± is plus. Add 5 to 11.
b=\frac{4}{3}
Reduce the fraction \frac{16}{12} to lowest terms by extracting and canceling out 4.
b=-\frac{6}{12}
Now solve the equation b=\frac{5±11}{12} when ± is minus. Subtract 11 from 5.
b=-\frac{1}{2}
Reduce the fraction \frac{-6}{12} to lowest terms by extracting and canceling out 6.
b=\frac{4}{3} b=-\frac{1}{2}
The equation is now solved.
6b^{2}-5b=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6b^{2}-5b}{6}=\frac{4}{6}
Divide both sides by 6.
b^{2}-\frac{5}{6}b=\frac{4}{6}
Dividing by 6 undoes the multiplication by 6.
b^{2}-\frac{5}{6}b=\frac{2}{3}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
b^{2}-\frac{5}{6}b+\left(-\frac{5}{12}\right)^{2}=\frac{2}{3}+\left(-\frac{5}{12}\right)^{2}
Divide -\frac{5}{6}, the coefficient of the x term, by 2 to get -\frac{5}{12}. Then add the square of -\frac{5}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-\frac{5}{6}b+\frac{25}{144}=\frac{2}{3}+\frac{25}{144}
Square -\frac{5}{12} by squaring both the numerator and the denominator of the fraction.
b^{2}-\frac{5}{6}b+\frac{25}{144}=\frac{121}{144}
Add \frac{2}{3} to \frac{25}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(b-\frac{5}{12}\right)^{2}=\frac{121}{144}
Factor b^{2}-\frac{5}{6}b+\frac{25}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{5}{12}\right)^{2}}=\sqrt{\frac{121}{144}}
Take the square root of both sides of the equation.
b-\frac{5}{12}=\frac{11}{12} b-\frac{5}{12}=-\frac{11}{12}
Simplify.
b=\frac{4}{3} b=-\frac{1}{2}
Add \frac{5}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}