Factor
2a\left(b-1\right)\left(3b-7\right)
Evaluate
2a\left(b-1\right)\left(3b-7\right)
Share
Copied to clipboard
2\left(3ab^{2}-10ab+7a\right)
Factor out 2.
a\left(3b^{2}-10b+7\right)
Consider 3ab^{2}-10ab+7a. Factor out a.
p+q=-10 pq=3\times 7=21
Consider 3b^{2}-10b+7. Factor the expression by grouping. First, the expression needs to be rewritten as 3b^{2}+pb+qb+7. To find p and q, set up a system to be solved.
-1,-21 -3,-7
Since pq is positive, p and q have the same sign. Since p+q is negative, p and q are both negative. List all such integer pairs that give product 21.
-1-21=-22 -3-7=-10
Calculate the sum for each pair.
p=-7 q=-3
The solution is the pair that gives sum -10.
\left(3b^{2}-7b\right)+\left(-3b+7\right)
Rewrite 3b^{2}-10b+7 as \left(3b^{2}-7b\right)+\left(-3b+7\right).
b\left(3b-7\right)-\left(3b-7\right)
Factor out b in the first and -1 in the second group.
\left(3b-7\right)\left(b-1\right)
Factor out common term 3b-7 by using distributive property.
2a\left(3b-7\right)\left(b-1\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}