Evaluate
\frac{4a\left(5-4a\right)}{3}
Factor
\frac{4a\left(5-4a\right)}{3}
Share
Copied to clipboard
\frac{3\times 6a}{3}-\frac{16a^{2}}{3}+\frac{2a}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6a times \frac{3}{3}.
\frac{3\times 6a-16a^{2}}{3}+\frac{2a}{3}
Since \frac{3\times 6a}{3} and \frac{16a^{2}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{18a-16a^{2}}{3}+\frac{2a}{3}
Do the multiplications in 3\times 6a-16a^{2}.
\frac{18a-16a^{2}+2a}{3}
Since \frac{18a-16a^{2}}{3} and \frac{2a}{3} have the same denominator, add them by adding their numerators.
\frac{20a-16a^{2}}{3}
Combine like terms in 18a-16a^{2}+2a.
\frac{2\left(9a-8a^{2}+a\right)}{3}
Factor out \frac{2}{3}.
a\left(10-8a\right)
Consider 9a-8a^{2}+a. Factor out a.
-8a+10
Consider 9-8a+1. Multiply and combine like terms.
2\left(-4a+5\right)
Consider -8a+10. Factor out 2.
\frac{4a\left(-4a+5\right)}{3}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}