Evaluate
-\frac{2b^{3}a^{11}}{9}
Expand
-\frac{2b^{3}a^{11}}{9}
Quiz
Algebra
5 problems similar to:
6 a ^ { 2 } b ^ { 3 } \cdot ( - \frac { 1 } { 3 } a ^ { 3 } ) ^ { 3 }
Share
Copied to clipboard
6a^{2}b^{3}\left(-\frac{1}{3}\right)^{3}\left(a^{3}\right)^{3}
Expand \left(-\frac{1}{3}a^{3}\right)^{3}.
6a^{2}b^{3}\left(-\frac{1}{3}\right)^{3}a^{9}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
6a^{2}b^{3}\left(-\frac{1}{27}\right)a^{9}
Calculate -\frac{1}{3} to the power of 3 and get -\frac{1}{27}.
-\frac{2}{9}a^{2}b^{3}a^{9}
Multiply 6 and -\frac{1}{27} to get -\frac{2}{9}.
-\frac{2}{9}a^{11}b^{3}
To multiply powers of the same base, add their exponents. Add 2 and 9 to get 11.
6a^{2}b^{3}\left(-\frac{1}{3}\right)^{3}\left(a^{3}\right)^{3}
Expand \left(-\frac{1}{3}a^{3}\right)^{3}.
6a^{2}b^{3}\left(-\frac{1}{3}\right)^{3}a^{9}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
6a^{2}b^{3}\left(-\frac{1}{27}\right)a^{9}
Calculate -\frac{1}{3} to the power of 3 and get -\frac{1}{27}.
-\frac{2}{9}a^{2}b^{3}a^{9}
Multiply 6 and -\frac{1}{27} to get -\frac{2}{9}.
-\frac{2}{9}a^{11}b^{3}
To multiply powers of the same base, add their exponents. Add 2 and 9 to get 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}