Solve for a
a=\frac{\sqrt{29}+5}{12}\approx 0.865430401
a=\frac{5-\sqrt{29}}{12}\approx -0.032097067
Share
Copied to clipboard
6a^{2}-5a-\frac{1}{6}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6\left(-\frac{1}{6}\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -5 for b, and -\frac{1}{6} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-5\right)±\sqrt{25-4\times 6\left(-\frac{1}{6}\right)}}{2\times 6}
Square -5.
a=\frac{-\left(-5\right)±\sqrt{25-24\left(-\frac{1}{6}\right)}}{2\times 6}
Multiply -4 times 6.
a=\frac{-\left(-5\right)±\sqrt{25+4}}{2\times 6}
Multiply -24 times -\frac{1}{6}.
a=\frac{-\left(-5\right)±\sqrt{29}}{2\times 6}
Add 25 to 4.
a=\frac{5±\sqrt{29}}{2\times 6}
The opposite of -5 is 5.
a=\frac{5±\sqrt{29}}{12}
Multiply 2 times 6.
a=\frac{\sqrt{29}+5}{12}
Now solve the equation a=\frac{5±\sqrt{29}}{12} when ± is plus. Add 5 to \sqrt{29}.
a=\frac{5-\sqrt{29}}{12}
Now solve the equation a=\frac{5±\sqrt{29}}{12} when ± is minus. Subtract \sqrt{29} from 5.
a=\frac{\sqrt{29}+5}{12} a=\frac{5-\sqrt{29}}{12}
The equation is now solved.
6a^{2}-5a-\frac{1}{6}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6a^{2}-5a-\frac{1}{6}-\left(-\frac{1}{6}\right)=-\left(-\frac{1}{6}\right)
Add \frac{1}{6} to both sides of the equation.
6a^{2}-5a=-\left(-\frac{1}{6}\right)
Subtracting -\frac{1}{6} from itself leaves 0.
6a^{2}-5a=\frac{1}{6}
Subtract -\frac{1}{6} from 0.
\frac{6a^{2}-5a}{6}=\frac{\frac{1}{6}}{6}
Divide both sides by 6.
a^{2}-\frac{5}{6}a=\frac{\frac{1}{6}}{6}
Dividing by 6 undoes the multiplication by 6.
a^{2}-\frac{5}{6}a=\frac{1}{36}
Divide \frac{1}{6} by 6.
a^{2}-\frac{5}{6}a+\left(-\frac{5}{12}\right)^{2}=\frac{1}{36}+\left(-\frac{5}{12}\right)^{2}
Divide -\frac{5}{6}, the coefficient of the x term, by 2 to get -\frac{5}{12}. Then add the square of -\frac{5}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{5}{6}a+\frac{25}{144}=\frac{1}{36}+\frac{25}{144}
Square -\frac{5}{12} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{5}{6}a+\frac{25}{144}=\frac{29}{144}
Add \frac{1}{36} to \frac{25}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{5}{12}\right)^{2}=\frac{29}{144}
Factor a^{2}-\frac{5}{6}a+\frac{25}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{5}{12}\right)^{2}}=\sqrt{\frac{29}{144}}
Take the square root of both sides of the equation.
a-\frac{5}{12}=\frac{\sqrt{29}}{12} a-\frac{5}{12}=-\frac{\sqrt{29}}{12}
Simplify.
a=\frac{\sqrt{29}+5}{12} a=\frac{5-\sqrt{29}}{12}
Add \frac{5}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}