Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(2a^{2}-a\right)
Factor out 3.
a\left(2a-1\right)
Consider 2a^{2}-a. Factor out a.
3a\left(2a-1\right)
Rewrite the complete factored expression.
6a^{2}-3a=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-3\right)±3}{2\times 6}
Take the square root of \left(-3\right)^{2}.
a=\frac{3±3}{2\times 6}
The opposite of -3 is 3.
a=\frac{3±3}{12}
Multiply 2 times 6.
a=\frac{6}{12}
Now solve the equation a=\frac{3±3}{12} when ± is plus. Add 3 to 3.
a=\frac{1}{2}
Reduce the fraction \frac{6}{12} to lowest terms by extracting and canceling out 6.
a=\frac{0}{12}
Now solve the equation a=\frac{3±3}{12} when ± is minus. Subtract 3 from 3.
a=0
Divide 0 by 12.
6a^{2}-3a=6\left(a-\frac{1}{2}\right)a
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{2} for x_{1} and 0 for x_{2}.
6a^{2}-3a=6\times \frac{2a-1}{2}a
Subtract \frac{1}{2} from a by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
6a^{2}-3a=3\left(2a-1\right)a
Cancel out 2, the greatest common factor in 6 and 2.